چکیده :
آب دریاچه ها و مخازن سدها در مناطق معتدله، در برخی از فصول سال مانند تابستان و زمستان، در اثر تغییرات شرایط اقلیمی، دچار لایه بندی حرارتی می شود. حال آنکه در فصول پاییز و بهار آب این منابع دستخوش اختلاط می گردد. پدیده لایه بندی و اختلاط می تواند پارامترهای کیفی آب را در طول سال در ترازهای مختلف آبگیری شدیداً تحت الشعاع قرار دهند. لذا آگاهی از چگونگی تغییرات کیفیت آب در دوره های مختلف سال، می تواند کمک موثری را در انتخاب بهترین تراز آبگیری و در نتیجه مدیریت کیفی آب بنماید. در این مطالعه با استفاده از مدل هیدرودینامیکی یک بعدی DYRESM، لایه بندی کیفی آب سد طرق واقع در استان خراسان رضوی به لحاظ حرارتی و شوری در طی یک دوره 2 ساله شبیه سازی شده و مورد بررسی و ارزیابی قرار گرفت . نتایج حاصله نشان دادند که لایه بندی حرارتی در مخزن مذکور از اواسط فصل بهار تدریجاً شروع شده و در اواسط فصل تابستان کامل می گردد. در اثر این لایه بندی حرارتی که تا آخر تابستان ادامه می یابد، حداکثر اختلاف دما بین پایین ترین تراز و بالاترین تراز 12درجه سانتیگراد می باشد که این امر از نظر تغییر در خصوصیات فیزیکی، شیمیایی و بیولوژیکی آب بسیار حائز اهمیت است. در مورد شوری(TDS)، اگر چه میزان آن در لایه های مختلف آب مخزن تفاوتی را نشان دادند ولی این تفاوت قابل توجه نبوده و معادل 40 میلیگرم در لیتر می باشد. بر اساس نتایج حاصله از مدل، بهترین لایه آبگیری در دوره های گرم سال، در تراز 29 متری از کف و بدترین لایه ها از نظر کیفی، تراز سطحی و پایین ترین تراز است. در فصلهای پاییز و زمستان لایه بندی حرارتی تشکیل نشده و اختلاط کامل در مخزن انجام می گیرد. در این فصول میانگین دمای آب مخزن به ترتیب 12 تا 16 درجه ساتیگراد می باشد. در این دوره ها بدلیل اینکه کیفیت آب مخزن در تمام عمق یکنواخت است، انتخاب تراز آبگیری اهمیت چندانی نداشته و آبگیری از مخزن سد می تواند از هر ترازی انجام پذیرد.
واژه های کلیدی : کیفیت آب، لایه بندی حرارتی آب در مخازن، مدل DYRESM ، آبگیری از مخازن سد.
مقدمه :
تغییرات دما و توسعه لایه بندی دمایی در دریاچه های مناطق معتدله و مخازن سدهای بزرگ معمولاً در فصول زمستان و تابستان اتفاق می افتد و در این امر باعث از بین رفتن و خوردگی مخازن آب بتنی می شود که باعث از بین رفتن کاور رویه یا لایه نهایی در مخزن شده که نیاز به ترمیم و همچنین آب بندی مجدد دیده می شود لیکن باید در بتن ریزی های این مخازن دقت های لازم صورت گیرد که از افزودنی های بتن و همچنین واتر استاپ ها از نوع های مختلف پی وی سی یا واتر استاپ بنتونیتی جهت اجرای تقاطع لوله ها در مخازن استفاده گردد اما در ادامه بحث در طی این دوره ستون آب معمولاً به سه لایه عمودی مجزا شامل 1- اپیلیمنیون 2- متالیمنیون (ترموکلاین)و 3-هیپولیمنیون تقسیم می شود. این لایه بندی به علت تفاوت در چگالی آب (ناشی از اختلاف دما) در ترازهای مختلف حاصل می شود[1] . همچنین تغییر در چگالی آبهای ورودی و تنشهای ناشی از سرعت باد می تواند در ایجاد لایه بندی و عمق لایه اختلاط موثر باشد[2] . بدیهی است در فصولی که لایه بندی اتفاق می افتد، تغییر در درجه حرارت لایه ها، کیفیت فیزیکی، شیمیایی و بیولوژیکی آب مخزن را در ترازهای مختلف، تغییر می دهد[4] . دمای آب بر روی نوع و میزان فعالیت گونه های بیولوژیکی، انحلال گازها، سرعت واکنشهای شیمیایی و سرعت رسوب گذاری تاثیر می گذارد به طوری که به ازای افزایش 10 درجه سانتیگراد، کلیه سرعت واکنشهای شیمیایی و بیوشیمیایی دو برابر می شود. در فصل تابستان به علت بالا بودن درجه حرارت و شدت تابش نور خورشید، رشد جلبکها در لایه های سطحی به شدت افزایش می یابد که این امر می تواند کیفیت آب را از نظر رنگ ، بو و طعم دچار تغییرات زیادی نماید. از طرفی دیگر به دلیل کاهش انحلال اکسیژن در آب و زیاد شدن سرعت تجزیه مواد تجمع یافته در رسوبات، شرایط در ترازهای عمقی آب می تواند کاملاً بی هوازی شده و منجر به تشکیل ترکیبات مولد بوها و یا طعم نامطبوع گردد[9]. آبگیری از لایه های مذکور و انتقال این گونه آبها به تصفیه خانه های آب آشامیدنی نه تنها میزان مصرف مواد شیمیایی و هزینه های تصفیه را افزایش می دهد بلکه در برخی مواقع شکایت مردم را نیز به دنبال دارد. لذا با آگاهی از شرایط کیفی آب در لایه های مختلف مخزن، می توان بهترین لایه را از لحاظ کیفی تشخیص داده و اقدام به آبگیری از آن تراز نمود.
تاریخچه :
با توجه به لایه بندی آب در دریاچه ها و مخازن سدها و تاثیر این لایه بندی بر خصوصیات آب استحصالی از این منابع، مطالعات گوناگونی تا به حال در جهت بررسی و پیش بینی تغییرات پارامترهای کیفی آب این گونه منابع در فصول مختلف سال انجام گرفته است. در طی دو دهه اخیر مدلهای هیدرودینامیکی مختلفی جهت بررسی شرایط کیفی آب مخازن سد ها توسعه یافته است. در برخی از این مدلها مانند مدلهای Minilake و AQUASIM، تنوع داده های ورودی بسیار محدود و در نتیجه، خروجی های حاصله از دقت و درجه اطمینان کافی برخوردار نیست[3]. ولی در برخی دیگر از مدلها به دلیل در نظر گرفتن شرایط هیدرودینامیکی آب در مخازن، خصوصیات مورفومتری مخازن، عوامل متعدد آب و هوایی، خصوصیات کمی و کیفی آبهای ورودی و همچنین توانایی محاسباتی بالا، تجزیه و تحلیل ها با دقت بیشتری انجام پذیرفته و نتایج بسیار مطلوب تر و دارای درجه اطمینان بیشتری است. از جمله مدلها می توان از مدل هیدرودینامیکی DYRESM (1981Imberger and Patterson )، مدل جدید AQUASIM(2001Ristow and Hansford) و مدلهای Stefan (1982)، Orlab (1983)، Franch (1985)، Anonymous (1986)، Ptic (1986)، Martin (1988)، Vertanen (1994)، Herman (1996) نام برد[3]. مدلهای اخیر هر یک دارای مزایا و معایب خاصی هستند که کاربرد بهینه آنها را برای شرایط و موقعیت خاصی رقم می زند . در این میان مدل یک بعدی DYRESM (1981Imberger and Patterson ) با توجه به در نظر گرفتن تغییرات پارامترهای مختلف آب و هوایی و تاثیر آنها در شرایط حرارتی و شوری آب و بدلیل دارا بودن خصوصیاتی از قبیل دقت محاسباتی بالا، انجام شبیه سازی برای دوره های زمانی کوتاه مدت (روزانه) تا بلند مدت (چندین ساله)، امکان استفاده در هر شرایط آب و هوایی و اقلیمی و عدم احتیاج به کالیبراسیون، کاربرد وسیعی را در بررسی و پیش بینی خصوصیات کیفی آب دریاچه ها و مخازن سدها دارد[3] .
Han و همکاران (2000) با استفاده از مدل DYRESM اقدام به شبیه سازی دمایی مخزن سد Sau در اسپانیا نمودند. ایشان با استفاده از داده های دمایی موجود از مخزن سد، اقدام به تست مدل کرده و تأثیر ورودی و خروجی ها را در شرایط لایه بندی دمایی مخزن مورد برسی قرار دادند [3]. T. ASaeda و همکاران (2001) به منظور بررسی و کنترل جلبکها در مخزن سد Terachi در غرب کشور ژاپن، ازمدل DYRESM به همراه مدلCAEDYM استفاده نمودند [8]. Gideon Gal و همکاران (2003) نیز با استفاده از این مدل خصوصیات حرارتی دریاچه Kineret در اسرائیل را شبیه سازی نموده و نتایج حاصل از مدل را با داده های دمایی موجود از دریاچه مقایسه کردند. آنها شرایط حرارتی حاصل از شبیه سازی توسط مدل را با استفاده از تغییر پارامترهای تابش طول موج کوتاه ، سرعت باد و ضریب روشنایی مورد بررسی قرار دادند و متوجه شدند که حساسیت مدل نسبت به پارامتر ضریب روشنایی بیش از سایر پارامترها بوده است [7].
همچنین Lousie و همکاران (2006) جهت بررسی نقش گردش کربن ، نیتروژن و فسفر بر روی پارامترهای مختلف کیفی آب و چگونگی لایه بندی آنها در دریاچه Kineret از مدلهای DYRESM و CAEDYM استفاده نمودند[6].
Balistrieri و همکاران (2006) در تحقیقات خود در ارتباط با تغییرات دما و شوری دریاچه Pexter Pit در ایالت Nevada آمریکا، مدل DYRESM را به کار گرفتند. نتایج کار آنها که بر مبنای مقایسه خروجی های حاصل از شبیه سازی مدل با داده های دما و شوری اندازه گیری شده از دریاچه بود، نشان داد که مدل مذکور در انجام شبیه سازی دمایی و شوری آب از دقت بسیار بالایی برخوردار است [5].
روش تحقیق :
در این تحقیق تغییرات شرایط دمایی و شوری آب مخزن سد طرق در یک بازه زمانی 2ساله (1999- 1998) مورد ارزیابی قرار گرفت. سد طرق در 25 کیلومتری جنوب شرقی شهر مشهد و در طول جغرافیایی '43 59 و عرض جغرافیایی '13 36 واقع شده و در سال 1367 و با هدف بهره برداری از آب آن جهت مصارف شرب و کشاورزی و کنترل سیلابهای سالانه بر روی رودخانه طرق ساخته شد. خروجی های این سد شامل یک دریچه تخلیه در پایین ترین تراز مخزن و سه دریچه آبگیر در ترازهای 29 ، 38 و 51 متری از کف مخزن و یک سرریز نیلوفری در ارتفاع 58 متری از کف مخزن می باشد .
جهت بررسی شرایط کیفی آب از نظر حرارتی و شوری و چگونگی روند تغییرات آنها از مدل هیدرودینامیکی DYRESM استفاده شد. اطلاعات لازم هواشناسی شامل آمار روزانه دمای هوا ، تشعشع طول موج کوتاه ، درجه ابرناکی ، سرعت باد و میزان بارندگی از ایستگاه سینوپتیک مشهد (وابسته به سازمان هواشناسی) بدست آمد. همچنین داده های مربوط به ورودی های به مخزن، با توجه به اینکه مخزن سد طرق تنها از یک جریان ورودی سطحی (رودخانه طرق) تغذیه می گردد، از داده های ایستگاه هیدرومتری کرتیان (وابسته به وزارت نیرو) واقع بر رودخانه طرق که در 3 کیلومتری بالادست مخزن سد قرار دارد استفاده شد.
نتایج و بحث:
بررسی لایه بندی حرارتی در داخل مخزن :
نتیجه مدل در ارتباط با چگونگی لایه بندی حرارتی آب مخزن سد طرق در طی دوره 2 ساله 1998 تا 1999 در شکل 1 نشان داده شده است. با توجه به نتایج مدل، در ابتدای سال 1998 (شروع زمستان)، بدلیل اختلاط کامل آب مخزن، لایه بندی حرارتی تشکیل نشده و شرایط دمایی آب در تمامی ترازهای مخزن یکسان و بین 12 تا 14 درجه سانتیگراد متغیر بوده است. لایه بندی حرارتی در فصل زمستان زمانی تشکیل می شود که آب لایه سطحی به علت سرد بودن هوا به صفر درجه برسد و در اثر یخ زدگی سبک تر از لایه های عمقی گردد. اما چنان که در شکل 2 نمودار توزیع فصلی درجه حرارت هوا را در منطقه نشان می دهد، مشاهده می گردد، میانگین دمای هوا در زمستان 1998 حدود 2/4 سانتیگراد بوده است و لذا وجود شرایط دمایی بالای صفر درجه، از تشکیل لایه بندی زمستانه جلوگیری کرده است. با فرا رسیدن فصل بهار و افزایش دمای آب در لایه های سطحی، به تدریج فرآیند لایه بندی مخزن شروع شده و تا اواسط تابستان کامل می شود، این لایه بندی تا اواخر تابستان ادامه دارد. در دوره تکمیل شدن لایه بندی، حداقل دمای آب در لایه پایینی 12 درجه و حداکثر دما در بالاترین لایه 24 درجه سانتیگراد بوده است. میانگین اختلاف دما بین لایه های سطحی و لایه های پایینی در طی دوره لایه بندی 11 درجه سانتیگراد را نمایش می دهد. وجود اختلاف دما بین لایه های مختلف، برخصوصیات فیزیکی، شیمیایی و بیولوژیکی آنها اثر گذاشته و کیفیت آب را در لایه های مختلف متفاوت می سازد. به عنوان مثال در طی دوره تابستان، رشد جلبکها در تراز بالایی آب به میزان زیادی افزایش می یابد که این امر می تواند، رنگ ، بو و طعم آب استحصالی از این لایه ها را شدیدا تحت تاثیر قرار دهد. تدریجاً با فرا رسیدن پاییز و آغاز دوره سرما و کاهش دمای هوا و دمای آب ورودی به مخزن، مجدداً فرایند اختلاط بوقوع پیوسته و باعث یکنواخت شدن شرایط دمایی آب با میانگین 15 درجه سانتیگراد می شود.
فرایند لایه بندی حرارتی آب در سال 1999 نیز شبیه سال قبل تکرار شده، به صورتی که در فصل زمستان شرایط دمایی در تمامی ترازهای مخزن مشابه بوده و دامنه تغییرات آن بین 14 تا 16 درجه سانتیگراد تغییر کرده است. در این دوره نیز به دلیل وجود میانگین دمای فصلی بالای صفر درجه (7 درجه سانتیگراد)، لایه بندی زمستانه تشکیل نشده است. لایه بندی حرارتی در این سال از اواسط بهار تدریجاً آغاز شده و تا انتهای فصل تابستان ادامه پیدا نموده است. متوسط اختلاف دمای آب بین لایه های سطحی و لایه های پایینی در سال 1999 معادل 7 درجه سانتیگراد بوده که نسبت به سال قبل 4 درجه سانتیگراد کاهش را نشان می دهد. با توجه به شکل 1، در طی دوره لایه بندی حرارتی در این سال، حداقل درجه حرارت آب مخزن 14 درجه سانتیگراد در پایین ترین لایه، و حداکثر درجه حرارت 22 درجه سانتیگراد در بالاترین لایه اتفاق افتاده است.
انعکاس لایه بندی حرارتی آب مخزن به خوبی در تغییرات دمای آب در خروجیهای مختلف سد نمایان است. همان گونه که اشاره شد سد طرق دارای 4 خروجی در ترازهای صفر، 29 ، 38 و 51 متری از کف می باشد. در جدول 2 میانگین دمای ماهانه و فصلی آب در محل هر یک از خروجی های سد در طی دوره دو ساله مورد مطالعه خلاصه شده است. نتایج میانگین دمای آب در فصول زمستان را به ترتیب از پایین ترین آبگیر برابر 4/13 ، 7/13 ،2/14 و 9/14درجه سانتیگراد و در فصول پاییز برابر 3/15، 4/15 ، 7/15 و 8/15 درجه سانتیگراد نشان می دهند. در بررسی میانگین دمای تراز های آبگیری در هر یک از ماههای پائیز و زمستان نیز اختلاف قابل توجهی بین ترازها مشاهده نگردید. مقایسه دمای آب در ترازهای مختلف آبگیری در فصلهای پاییز و زمستان، بیان گر این واقعیت است که در این دوره ها به دلیل اختلاط کافی، آب مخزن شرایط دمایی و کیفیتی مشابه ای را در اعماق دارا می باشد و لذا می توان آبگیری را از هر ترازی انجام داد.
اما در فصول گرم سال (بهار و تابستان) با توجه به اختلاف زیاد دمای آب در ترازهای آبگیری، انتخاب لایه آبگیر از اهمیت ویژه ای برخوردار می شود. با توجه به جدول 2 میانگین دما در ترازهای آبگیر در فصول بهار ، از پایین ترین تا بالاترین لایه به ترتیب برابر 9/13 ،7/15 ، 9/17 و 4/21 درجه سانتیگراد و در فصول تابستان به ترتیب برابر 3/15 ، 3/19 ، 1/20 و 3/20 درجه سانتیگراد بوده است . با توجه به نتایج ارائه شده، بیشترین اختلاف دمای آب که همواره بین پائینترین و بالا ترین ترازهای آبگیری مشاهده می گردد، در ماه می سال 1998 و ماه ژولای سال 1999 اتفاق افتاده و به ترتیب برابر با 11 و 6 درجه سانتیگراد بوده است. اختلاف دمایی نسبتاً زیاد بین ترازهای آبگیری دال بر اینست که شرایط کیفی آب اعماق مختلف مخزن یکنواخت نبوده و برخی از ترازها نسبت به سایر ترازها از کیفیت بهتری برخوردارند. از نظر پارامتر حرارتی، در فصول بهار و تابستان، آب پائینترین لایه بهترین شرایط را بین ترازهای آبگیر دارا است اما به دلیل وجود رسوبات در کف مخزن و نیز احتمال تجزیه مواد آلی در شرایط بیهوازی، کیفیت آب در پائینترین تراز ممکن است از نظر رنگ، طعم و بو نامناسب باشد. لذا گزینه مناسب جهت آبگیری، خروجی تراز 29 متری است. در این تراز متوسط دمای آب در بهار 7/15 سانتیگراد و در تابستان 3/19 سانتیگراد می باشد و همچنین مشکلی به لحاظ تجمع رسوبات و ایجاد شرایط بی هوازی وجود ندارد.
بررسی لایه بندی شوری در داخل مخزن :
نقشه لایه بندی شوری آب مخزن سد طرق طی دوره 2 ساله مورد مطالعه در شکل 3 نشان داده شده است. با توجه به نتایج حاصله از مدل، در سال آبی 1998، شوری آب (TDS) در فصل زمستان به دلیل اختلاط کامل مخزن، در تمامی ترازها یکسان بوده و مقدار آن بین 310 تا 320 میلیگرم در لیتر تغییر کرده است. تدریجاً با شروع فصل بهار و آغاز دوره گرما، به دلیل لایه بندی حرارتی و نیز تغییر در شوری آب ورودی به مخزن، لایه بندی شوری نیز در داخل مخزن ایجاد گردیده است. به طوری که میزان غلظت املاح در لایه سطحی 260 میلیگرم در لیتر و در لایه پایینی مخزن320 میلیگرم در لیتر بوده است. میانگین اختلاف شوری آب در طی دوره لایه بندی بین لایه حداقل و لایه حداکثر حدود 35 میلیگرم در لیتر مشاهده شده است. در انتهای سال 1998 به علت کاهش دمای آب ورودی به مخزن و دمای هوا، فرایند اختلاط آب در مخزن اتفاق افتاده که نهایتا باعث یکنواخت شدن شوری آب در کل مخزن با میانگین غلظت املاح 310 میلیگرم در لیتر شده است. روند تشکیل لایه بندی شوری آب در سال 1999 مشابه سال 1998 مشاهده گردید. یعنی در آغاز فصل زمستان شرایط شوری در تمامی تراز های آب یکسان بوده و تدریجاً با حرکت به سمت فصول گرم سال (بهار و تابستان) لایه بندی شوری ایجاد گردید. همان گونه که در شکل 3 ملاحظه می شود شوری آب مخزن طی دوره دو ساله 1998 تا 1999 روندی افزایشی را داشته است. در آغاز سال 1998 مقدار املاح آب حدود 310 میلیگرم در لیتر بوده در حالی که در انتهای سال 1999 مقدار املاح به 360 میلیگرم در لیتر رسیده است که احتمالا ناشی از کاهش حجم آب ورودی و افزایش تبخیر در سال 1999 بوده است.
جدول 1 استانداردهای ارائه شده توسط سازمان جهانی بهداشت برای شوری آب (TDS) در مصارف آشامیدنی و زراعی آمده است. با توجه به استانداردها، مقدار مطلوب TDS برای مصارف آشامیدنی و زراعی ، 500 میلیگرم در لیتر و حداکثر مقدار مجاز آن1500 میلیگرم در لیتر می باشد. در حال حاضر، مقایسه نتایج طرح با استانداردها این حقیقت را نشان می دهد که علیرغم ایجاد لایه بندی های آب در فصول گرم، مقدار TDS مخزن همواره کمتر از 500 میلیگرم در لیتر بوده و برای مصارف آشامیدنی و زراعی مطلوب است. ولی چنانچه روند افزایش شوری مخزن در سالهای آتی نیز به دلیل کاهش بارندگی و افزایش تبخیر از سطح مخزن ادامه یابد، می تواند مشکلاتی را در امر مصارف فوق به همراه داشته باشد.
حداکثر اختلاف میانگین فصلی شوری در بین ترازهای آبگیری، مربوط به شوری آبگیرهای بالایی و پایینی است که در فصل بهار اتفاق افتاده و برابر با 27 میلیگرم در لیتر بوده است. بر اساس نتایج، بازه تغییرات ماهانه شوری آب در اعماق مختلف مخزن سد بین 275 تا 358 میلیگرم در لیتر بوده که بر اساس استانداردهای سازمان جهانی بهداشت برای مصارف زراعی و آشامیدنی، در محدوده مناسب واقع شده است و لذا مکان آبگیری از این مخزن، از نظرشوری آب خروجی اهمیتی را دارا نمی باشد.
نتیجه گیری:
نتایج حاصله از پیش بینی شرایط حرارتی و شوری توسط مدل DYRESMمی تواند راهنمای مناسبی در جهت آگاهی از شرایط کیفی آب مخزن سد طی دوره های مختلف باشد و در برنامه ریزیهای مدیریت بهره برداری مورد استفاده قرار گیرد. نتایج حاصل از شبیه سازی حرارتی مخزن سد طرق، توسط مدل مذکور نشان داد که در طول سال، تنها یک بار فرایند لایه بندی حرارتی آب، آن هم در فصول گرم سال به وقوع می پیوندد. لایه بندی حرارتی در مخزن سد طرق تدریجاً از اواسط بهار شروع و در اواسط تابستان به اوج رسیده و تا انتهای تابستان نیز ادامه دارد. در طول این دوره، حداکثر تفاوت در میانگین درحه حرارت لایه های اپیلیمنیون و هیپولیمنیون، 12 درجه سانتیگراد مشاهده گردید. وجود لایه بندی حرارتی نسبتاً پایدار باعث می گردد که خصوصیات کیفی آب (مانند رنگ، بو، طعم و ....) در لایه های مختلف مخزن بسیار متفاوت باشد. بر اساس نتایج، با شروع دوره سردی هوا و وقوع اختلاط در مخزن، تدریجا لایه بندی حرارتی از بین رفته و از اواسط فصل پاییز تا انتهای زمستان تفاوت قابل ملاحظه ای در دمای آب در اعماق مختلف مخزن مشاهده نگردید. روند تشکیل لایه بندی شوری آب نیز از نظر زمانی مشابه لایه بندی حرارتی بود. ولی میزان شوری در لایه های تشکیل شده تفاوت چشمگیری را نشان نداد و حداکثر به 35 میلیگرم در لیتر رسید. نتایج به دست آمده حاکی از آن است که اعمال مدیریت کیفی آب مخزن سد طرق در فصول بهار و تابستان از اهمیت ویژه ای برخوردار است. در این فصول آبگیری از دریچه مستقر در تراز 29 متری بهترین کیفیت آب را در اختیار قرار می دهد. در این دوره آبگیری از بالاترین تراز به دلیل رشد جلبکی زیاد و از پایین ترین تراز به دلیل تجمع رسوبات و ایجاد شرایط بی هوازی توصیه نمی گردد. در فصول پاییز و زمستان به دلیل اختلاط کامل آب مخزن، کیفیت آب استحصالی از تمامی آبگیرها شرایط یکسانی را دارد.
منابع :
1-Reynolds,C.S.1992. Daynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Arch Hidrobiol. Beih Ergbn. Limnol. 35,13-31.
2-Armengol. J., Crespo. M., Morgui. J. A., and Vidal. A. 1986. Phosphorus budget and forms of phosphoros in the Sau Reservoir sediment: an interpretion of the limnological record. Hydrobiologia. Vol. 143, pp 331-336.
3- Han. P., Armengol. J., Garcia. C. J., Comerma. M., Roura. M., Dolz. J., and Straskraba. M. 2000. The thermal structure of Sau Reservoir (NE: Spain): a simulation approach Ecological Modelling. Vol. 125, Iss. 2-3, pp109-122.
4-Ford. D. E., and Thornton, K.W. 1979. Time and length scales for the one-dimensional assumption and its relation to ecological models.Water Resources Res.,Vol. 15, pp113-120.
5-Balistrieri. L., Tempel. R. N., Stillings. L., and Shevenell. L. 2006. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA. Applied Geochemistry, Vol.21, Iss. 7, pp.1184-1203
6- Louise. C. B., Hamilton. D., Imberger. J., Gal. G., Gophen. M., Zohary. T., and Hambright K. D. 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling, Vol.93, Iss. 3-4, pp. 412-436.
7- Gal. G., Imberger. J., Zohary. T., Antenucci. J., Anis. A., and Rosenberg. T. 2003. Simulating the thermal dynamics of Lake Kinneret. Ecological Modelling, Vol.162, Iss. 1-2, pp. 69-86.
8- Asaeda. T., Pham. H. S., Nimal Priyantha. D. G., Manatunge. J., and Hocking. G. C., 2001. Control of algal blooms in reservoirs with a curtain: a numerical analysis. Ecological Eng., Vol.16, Iss. 3, pp. 395-404.
-گارندگان :شهناز دانش ، سعیدرضا خداشناس، مصطفی خیّامی
9- حمیدرضا توحیدی. 1377 . تحقیق در رابطه با عوامل موثر در تغییرات کیفی آب مخزن سد طرق و ارائه روشهای بهینه کردن آب دریاچه . کمیته تحقیقات کاربردی شرکت آب منطقه ای خراسان رضوی (وزارت نیرو ) .
نویسنده : کلینیک فنی و تخصصی بتن ایران|دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))
1- ژئوتکستایلها (Geotextiles)
ژئوتکستایلها غالباً از پلیمرها یا پلی پروپیلنها ساخته شدهاند. پلیپروپیلنها دارای وزن مخصوص کمتر از واحد بوده ( 9/0 و محکم و بادوام هستند. از الیاف و فیبرهای رشتهای پلیپروپیلنها در ساختژئوتکستایلهای بافته شده (Woven) و بافته نشده (Nonwoven) استفاده میشود.
همچنین از فیبرهای پلیاستر با مقاومت بالا نیز در ساخت ژئوتکستایلها استفاده میشود. پلیاسترها دارای وزن مخصوص بزرگتر از واحد (1) و مقاومت بسیار عالی هستند و با اغلب خاکهای موجود در محیط سازگار میباشند.
بهطور کلی ژئوتکستایلها به دو نوع اصلی تقسیم میشوند:
بافته شده یا منسوج (woven)
2- بافته نشده یا غیرمنسوج (Nonwoven = y 1)
2- ژئوگریدها (Geogrides)
از انواع محصولات ژئوگریدها، نوع مشبک است که بهصورت تار و پود، یا فواصل معین، در دو جهت و با مقاومت بالا تولید میشود.
از این شبکهها به اشکال تک لایه و چند لایه، میتوان، برای مسلح و مقاوم نمودن سطوح خاکریزی، با مساحت کم استفاده نمود. ژئوگریدها ضمن بالا بردن پایداری خاک از تغییر مکانهای افقی آن جلوگیری میکند.
ژئوکامپوزیت (ترکیب ژئوگرید با ژئوتکستایل) (Geocomposite 3-)
ژئوگریدها با توجه به ساختار و خواص پلیمرها دارای مقاومت نهایی محدود شدهای هستند. در یک سیستم مرکب، یک ژئوگرید به همراه ژئوتکستایل برای سهولت، در توسعه سطح خاکریز میتواند بکار گرفته شود و سپس خاکریز برروی آن اجرا گردد.
ژئوکامپوزیتها همچون کولباندرین (زهکشی عمیق) و یا انکادرین (زهکشی افقی و قائم) در تحکیم اراضی سست، از طریق تسهیل در خروج آب موجود در خاک و جمعآوری و هدایت آبهای نشتی و در تماس با سازهها با استفاده از زهکشیهای قائم و افقی، مورد استفاده قرار گیرد.
1-3- ژئودرین (Geodrain)
یک نوع از ژئوکامپوزیتها به نام آنکادرین به سه لایه کامپوزیتی عایق رطوبتی، زهکشی و جمعکنندگی و هدایت و انتقال آبگذری، با کاربری بسیار بالایی عمل زهکشی و عایق رطوبتی را در دیوارههای در ارتباط با خاک انجام میدهد.
همچنین از نوع دیگری از کامپوزیتهای آنکادرین با خاصیت زهکشی افقی، جهت ایجاد فضاهای سبز روی پشت بامها و باغهای پشت بامی استفاده میشود. این محصولات با توجه به سبکی وزن، انعطافپذیری، سرعت عمل در نصب و راحتی حمل و نقل، استفاده وسیعی در صنعت ساختمان، در کشورهای اروپایی و آمریکایی، پیدا کرده است. به علاوه نوع دیگری از این محصولات جهت زهکشی و در قالببندی (کفراژ) فونداسیونها و در دیوارهای حائل و یا در زهکشی و تحکیم پارکینگها و ... مورد استفاده قرار میگیرد.
کارکرد عمومی محصولات انکادرین بهطور عمده بهعنوان زهکش در پشت دیوارهای قائم و حائل لبه جاده، خاکریزها و تونلها و بهطور افقی بهعنوان زهکش در زیر محوطههای پارکینگ زیر فضای سبز (اماکن ورزشی و استادیومها) و بامها، سیستمهای فاضلاب و Landfill است.
4-ژئوممبران (Geomembrane)
ژئوممبرانها بهعنوان یک عایق بسیار مقاوم و کم هزینه و دارای طول عمر زیاد، در بسیاری از صنایع کاربرد دارد که از آن جمله میتوان به موارد زیر اشاره نمود:
آب و فاضلاب: از ژئوممبرانها جهت ساخت لاگونها، کانالهای آبرسانی، حوضچهها و استخرها و دریاچههای مصنوعی استفاده میشود. با توجه به اینکه ژئوممبران در تماس با خاک هستند، برحسب لزوم امکان ترکیب آنها با ژئوتکستایل و یا ژئوگریدها میسر است.
ایزولاسیون سازههای زیرزمینی در برابر نفوذ آبهای سطحی و زیرزمینی: در این خصوص میتوان به ایزوله دیوارهای متروهای شهری و سازههای هیدرولیکی و غیره اشاره نمود.
سایت دفن زباله شهری و صنعتی و خطرناک: با استفاده از ژئوممبران میتوان مخازن کاملاً ایزوله از محیط اطراف، جهت دفن زبالههای شهری و صنعتی ایجاد نمود. ژئوممبرانها دارای انواع فراوانی، به لحاظ مقاومت در برابر مواد شیمیایی و مخرب هستند.
ایجاد و توسعه زمینهای کشاورزی در محیطهای نامساعد.
5- ژئوسلها (Geocells)
یک شبکه لانه زنبوری از نوارهای پلی استر نبافته، متصل به یکدیگر، ساخته شده که با دوخته شدن این شبکهها به یکدیگر، فضاهایی مانند لانه زنبور (6 ضلعی) ایجاد شده که با پر شدن از خاک، شن، بتن یا مصالح دیگر، استحکام و صلبیت کافی جهت شیبها، ترانشهها، دیوارها در برابر فرسایش و ریزش ایجاد میکند.
امروزه پیشرفت صنعت استفاده از ژئوسنتتیکها آنچنان وسیع و گسترده شده است که تقریباً غیرممکن را امکانپذیر نموده است، (حتی اسکی نمودن در فضاهای سربسته برروی یخ با استفاده از لایههای صفحهای انکادرین).
امروزه نه تنها از مواد ژئوکامپوزیتی جهت سالنهای اسکیت یخ و برف و استادیومهای ورزشی و زمینهای چمن مصنوعی و درختکاری و فضای سبز بامها استفادههای فراوان میشود، بلکه حتی میتوان با استفاده از تکنولوژی از صنعت ژئوسنتتیک و تلفیق با تکنولوژیهای دیگر در کشاورزی، همچون آبیاری قطرهای، کویرها را نیز آباد نموده مورد بهرهبرداری قرار داد و در نتیجه کمک شایانی به اقتصاد و آبادانی کشورها نمود.
ژئوتکستایلهای منسوج (Woven Geotextiles)
این ژئوتکستایلها از تک رشتههای به هم بافته شده (Monofilament) یا چند رشتهایهای به هم بافته شده (Multi Filament) و یا نوارهای منسوج بریده شده (Slim Film Fabric) ساخته میشود. تهیه این دسته از ژئوتکستایلها، در دو مرحله انجام میگیرد که عبارتست از:
تولید و عمل آوردن الیاف
افت الیاف
ژئوتکستایلهای تک رشتهای نسبت به انواع دیگر نفوذپذیری بهتری دارند و برای استفاده بهعنوان زهکش و یا جهت کنترل فرسایش خاک مناسب هستند.
ژئوتکستایلهای چند رشتهای دارای مقاومت بالایی هستند و اصولاً بهعنوان مسلحکننده کاربرد دارند.ژئوتکستایلهای تشکیل شده از نوارهای منسوج جهت کنترل رسوبات و محصور کردن لای و لجن، و پایداری جادهها و مسیرها مورد استفاده قرار میگیرند.
2-1-ژئوتکستایلهای غیر منسوج (NonWoven Geotextile)
این نوع ژئوتکستایلها از الیاف کوتاه معمولاً 2.5-10cm 1-4inch و یا الیاف بلند که بهصورت رندم در لایههایی برروی یکدیگر، همانند یک شبکه نمدی توزیع شدهاند، ساخته میشود. سپس این شبکههای نمدی از دستگاههایی، جهت به هم متصل کردن لایهها به یکدیگر، عبور داده میشوند.
ژئوتکستایلهای غیرمنسوج در زهکشها، کنترل فرسایش خاک و همچنین جهت پایدارسازی جادهها و مسیرها بر روی خاکهای حساس به رطوبت کاربرد دارند.
امروزه در اکثر کشورهای پیشرفته ژئوتکستایلها را جهت تسلیح، تقویت و پایدارسازی بستر و ساحلهای سست و یا احداث راه و راهآهن روی بستر باتلاقی، حتی در مواقع دشوار، بدون نیاز به هرگونه لجنبرداری و یا قلوهریزی و یا احیاء اراضی ساحلی و توسعه بندرگاهها و یا احداث موجشکن و دیگر سازههای دریایی، روی بسترهای فوقالعاده سست بکار میبرند.
همچنین از کیسههای شنی ژئوتکستایل جهت راه حلی مطمئن برای ترمیم سریع و اقتصادی موقت سازههای ساحلی صدمه دیده، استفاده میشود.
ژئوتکستایلها در تسلیح، فیلتراسیون و حفاظت از کانالها و لولهها نیز کاربرد دارند:
در این مورد ژئوتکستایلها دور لوله قرار میگیرد و آن را در مقابل آسیبهای فیزیکی و شیمیایی حفاظت میکند. به این ترتیب نیاز به ریختن خاک سرندی در اطراف لوله بر طرف میشود و یا ژئوتکستایل روی کف و بدنه کانال پهن میشود تا از ورود خاک ریزدانه به داخل کانال در اثر بالا آمدن سطح آب زیرزمینی جلوگیری کرده و در سیستم زهکشی شرکت میکند. ژئوتکستایلها در اطراف لولههای زهکشی زیر خاک بهعنوان فیلتر بکار میروند.
مزایای کاربرد این نوع مصالح بهعنوان فیلتر در ساخت و نصب سریع، صرفهجویی اقتصادی، مقاومت شیمیایی بالا، دوام عالی، عدم جدایی بین دانهها بهعنوان فیلتر در ساخت و نصب سریع، صرفهجویی اقتصادی، مقاومت شیمیایی بالا، دوام عالی، عدم جدایی بین دانهها که در فیلترهای خاکی در حین ساخت ایجاد میشود و کاهش عملیات خاکی میباشد.
ژئوتکستایلها همچنین روی بدنه لوله و جداره کانال بهصورت زین اسبی پهن شده و روی آن با خاک پر میشود و با این عمل نیروی Uplift زیر لولهها توسط ژئوتکستایل از طریق به کشش افتادن (تسلیح)، جذب میشود.
نویسنده : |دپارتمان تحقیق و توسعه.کلینیک بتن ایران((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))