کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

سازه های بتنی در محیط دریایی

تعداد وسیعی از باراندازها، حوضچه های تعمیراتی، تیرها و پایه های پل، موج شکن ها و تونل های زیردریایی از بتن مسلح ساخته شده اند. بتن به عنوان مصالح ساخت مناسب برای سازه هایی که در معرض محیط دریایی قرار دارند، مورد پذیرش کلی قرار گرفته است و در صورتیکه طبق اصول صحیح ساخته و نگهداری شود، می تواند بر مشکلات فائق آید. ولی در صورت انتخاب مصالح نامناسب، کیفیت ضعیف اجرا و عدم نگهداری کافی، دچار فساد و خرابی خواهد شد. مکانیزم های اصلی تخریب سازه های بتنی در محیط دریایی خوردگی میلگردهای کار گذاشته شده در بتن، تجزیه و تخریب بتن، سیکل های یخ زدن و آب شدن و تشکیل ترکیب اترینگایت و واکنش قلیایی –سیلیسی را شامل می شود.

غالباً خوردگی در سرتاسر طول یک عضو یکنواخت نیست و معمولاً به وسط یا دو انتهای عضو محدود می شود. در رابطه با شمع ها امکان دارد خوردگی در بالای سطح آب، شدید و در زیر آن ضعیف باشد و یا اصلا اتفاق نیافتد. این ناحیه که در معرض حداکثر خوردگی است، غالباً دورتر از مقاطع مربوط به حداکثر لنگرها و نیروهای برشی است ولی میلگردها ممکن است در سرتاسر عضو یکنواخت باشند.

با پیشرفت خوردگی، نهایتاً فرو ریختگی ناشی از آن اتفاق می افتد. نتایج نهایی سازه ای مادامی که میلگردها در بتن به صورت گیردار باقی باشند، بستگی به میزان افت فولاد دارد. به هر حال خوردگی به ویژه خوردگی حفره ای باعث تمرکز تنش افزایش یافته می شود که منجر به افت شکل پذیری و کاهش تغییر طول نهایی گسیختگی می گردد. همچنین تحت بارهای ضربه ای و دینامیکی شکست نهایی ممکن است به صورت تردد و شکننده باشد. در سازه های پیش تنیده نیز علیرغم اجرای بسیار عالی در محیط دریایی به علت آنکه بتن آن ها نفوذپذیری کم تری داشته و عاری از ترک های میکروسکوپی (ریزترک ها) است، ولی وقتی کابل های پیش تنیدگی خورده می شوند، نتایج و آثار سازه ای به دلیل قطر کم کابل ها و تنش زیاد موجود در آنها شدیدتر بروز می نماید. البته چنین وضیعتی از لحاظ خوردگی کابل های پیش تنیدگی در محیط دریایی زمانی روی می دهد که سازه در معرض ناحیه پاشش بوده و بتن دارای نفوذپذیری بالایی (مثلاً ناشی از نسبت آب به سیمان کنترل نشده) باشد.

محل و نوع سازه نیز میزان خوردگی را تحت تاثیر قرار می دهد. اعضای سازه ای بتنی واقع در ناحیه جزر و مدی و ناحیه پاشش عموماً دچار بیشترین میزان خوردگیهستند. در این نواحی، اعضاء به طور ثابت تحت اثر سه عامل اولیه هدایت کننده خوردگی شامل اکسیژن، کلریدها و رطوبت قرار دارند. شمع ها بیشتر از سایر اعضای سازه ای در معرض خوردگی هستند، زیرا در نواحی فوق با پتانسیل بالای خوردگی قرار دارند، اما بخش هایی از شمع ها که زیر آب واقع شده اند، به دلیل کمبود اکسیژن در زیر آب، دچار خوردگی کمتری می شوند.

اعضایی مانند سرشمع ها، تیرها و عرشه ها در محیط دریایی فعال و در جایی که امواج و پاشش اتفاق می افتد، نسبت به محیط های با آسیب کم تر، نوعا تخریب های جدی تری را متحمل می شوند. به همین دلیل در سازه باراندازهای ساحلی، اعضای نزدیک به خشکی دچار تخریب های بیشتری نسبت به اعضای دورتر از ساحل هستند. در واقع وقتی ضربه امواج به شیب ساحل و دیوار ساحلی برخورد می کند، اسپری های مملو از یون های کلرید مستقیماً پرتاب شده و به این اعضاء برخورد می نمایند. نوع اسکلت سازه نیز نقش مهمی را در روند پیشرفت خوردگی بازی می کند. مثلاً باراندازهای با عرشه تخت که سطح زیرین آن ها فاقد سر شمع یا تیرهایی است که به وضوح دیده شوند، نسبت به باراندازهای رایج دارای عرشه های با سر شمع و تیر، خوردگی کمتری را دارند. علت این امر در کاهش گوشه های در معرض محیط است. گوشه های سازه ای به دلیل امکان نفوذ بیشتر کلر از دو وجه آنها و همچنین نیاز به فشار کمتر جهت تخریب سازه ای ناشی از احاطه نبودن کامل، با سرعت بیشتری دچار خوردگی، آسیب و تخریب می گردند.

خرابی بتن

تخریب سازه های دریایی بتنی ممکن است ناشی از اثرات فیزیکی یا شیمیایی آب دریا بر روی آنها باشد. خوشبختانه تجزیه بتن توسط خودش منجر به آسیب وسیع به سازه های مدرن نشده است ولی به هر حال از بین رفتن و آسیب پوشش بتنی روی میلگردها، عامل اصلی تشدید خوردگی فولاد روی بتن است. خرابی بتن امر بسیار پیچیده ای است، به دلیل آن که به پارامترهای متعددی بستگی دارد که به آسانی قابل تفکیک از یکدیگر نیستند و بسته به ترکیب مواد و محیط با درجات و شدت های متفاوتی عمل می نمایند.

اگر سازه کاملاً غوطه ور باشد، آسیب مصالح در اثر آب دریا اساس مربوط به فرآیند شیمیایی است. در ناحیه پاشش، خرابی و آسیب دارای ماهیت شیمیایی و فیزیکی است. عمل مکانیکی موج ها، تورم و انقباض ناشی از تر و خشک شدن متناوب، شرایط جوی (باد، تابش مستقیم آفتاب، یخ زدگی) و   شیمیایی میلگردهای فولادیفرآیندهای فیزیکی هستند که با فرآیندهای مخرب شیمیایی جمع شده اند. تخریب بتن غوطه ور در آب به عواملی چون تشکیل ترکیب اترینگایت، واکنش قلیایی- سیلیسی و خوردگی محدود می گردد و بتن در ناحیه پاشش و ناحیه جوی در معرض پدیده یخ زدن و آب شدن نیز هست.

 

مهندسی و اجرای ترمیم سازه های بتنی

هر سازه بتنی در طول مراحل ساخت و بهره برداری می تواند به علل مختلف مانند خوردگی آرماتور ها ، نفوذ آب ، حمله سولفات و کلر ها ، کربناتاسیون ، قلیایی بتن ، اشتبا هات طراحی و بارگذاری ، حوادث ، ترک های ناشی ازجمع شدگی و عدم کیورینگ و نگهداری مناسب ، عدم اجرای نامناسب بتن ، عدم کیفیت لازم طرح اختلاط ، عدم فراهم بودن شرایط مناسب بتن ریزی و ... دچار نقص کیفی در بتن گردد که باعث تحلیل عضو بتنی کاهش شدید دوام و مقاومت بتن و حتی از بین ر فتن دائمی عضو می گردد.

از سوی دیگر بدیهیست که هر گونه ترمیم و تعمیر اصولی و کارآمد بتن نیازمند تشخیص کارشناسی عوامل ایجاد کننده نقص و تشریح نیاز های مورد نظر از ترمیم می باشد که این امر به نوبه خود نیازمند احاطه کامل کارشناسان به مصالح متنوع ترمیمی چه از نظر ساختار و چه از منظر کاربرد و اجرا می باشد . چراکه عدم رعایت اصول ومراحل ترمیم بتن می تواند باعث تشدید آسیب ها ، تحمیل هزینه های مضاعف و کاهش بیش از پیش کیفیت عضو و کاربری آن می شود . از این رو پر واضح است که یکعملیات ترمیم اصولی ، با کیفیت و با دوام ، در تعامل با مجموعه ای از دانش های فنی وتجربه اجرایی مورد نیاز انجام پذیر است .بدین جهت کلینیک بتن ایران با در اختیار داشتن کادر تخصصی کارشناسی و اجرایی با تجربه ، نسبت به ارائه این خدمات تخصصی بتن به پروژه های مختلف در سطح کشور اقدام نموده است.

آب بند چیست و نحوه انتخاب مناسب ترین نوع آن چگونه است؟

سالهاست استفاده از آب بند (واتر استاپ) به منظور آب بندی درزهای اجرایی و محل های قطع بتن (Construction Joint) متداول است. امروزه تمامی کشورهای توسعه یافته و پیشرفته از آب بندهای هیدروفیلیک یا بنتونیتی برای آب بندی درزهای اجرایی استفاده می کنند نه نوع P.V.C آن، زیرا محل ثابت سازی آب بندها در بین آرماتورها می باشد و با گذشت چند سال از عمر سازه و بررسی شرایط آرماتورها و بتن مشاهده می کنیم آرماتورهای طولی و عرضی که در سمت آبگیر سازه قراردارند به واسطه عبور آب و استفاده نکردن از افزودنی های بتن، از طریق درز سرد موجود بین مقاطع بتن ریزی شده و لوله های موئین ناشی از تبخیر آب بتن، دچار زنگ زدگی شده که در برخی از موارد با انبساط 6 الی 15 درصدی حجم آرماتورها، بتن دچار ترک خوردگی می گردد. این نقصان عاملی جهت تشدید نفوذپذیری و کاهش شدید طول عمر سازه بتنی می باشد. آب بندهای هیدروفیلی یا بنتونیتی علاوه بر سهولت و سرعت بسیار زیاد در نصب تمامی نواقص فوق الذکر را رفع می کنند.

برای آب بندی یک سازه بتنی باید دو کار اساسی صورت بگیرد:

• آب بندی خود بتن توسط بتون مناسب

• آب بندی درزهای بتن توسط واتراستاپ

که هر دو صورت می بایست برقرار باشد.

اصول آب بندی بتن

اصلاح منحنی دانه بندی و کنترل میزان فیلر (FILLER) بتن یعنی بیشتری نسبت به سایر مواد داشته باشد و تغییر نسبت مصالح درشت به ریز (در بتن های معمولی شن بیشتر است ولی در اینجا نسبتها برابر باید باشد)، نسبت آب به سیمان حداقل است، از دیگر عوامل موثر ویبره ی مناسب است و برای افزایش ضریب اطمینان لزوما همه بتن ها نیاز به افزودنی ندارند البته اگرخوب اجرا شود.

اصول آب بندی درزها

• واتر استاپ(water stop)

• درزگیر بتن که به عنوان مکمل استفاده می شود نه به عنوان جایگزین

کاربرد واتراستاپ ها برای آب بندی درزهای اجرایی و درزهای انبساط در سازه های بتنی آبی استفاده می شود.

اهمیت واتر استاپ ها را در سازه های آبی می توان به مانند بادبند ها در سازه ها عنوان نمود.

واتر استاپ طول مسیر جریان و حرکت آب را طولانی می کند تا آب نتواند نشت کند. ضخامت بتن بر اساس میزان نفوذ پذیری از آن جهت اهمیت دارد که اگر ضخامتش بیشتر از میزان نفوذ پذیری آب باشد تا آب از آن عبور نکند.

یکی از نکات در طراحی، عرض واتر استاپ است، که عمق نفوذ بیشتر از یک دور رفت و برگشت باشد.

انواع درزها

1- درزهای ثابت: در این درزها آرماتور قطع نمی شود.

الف) درزهای اجرایی (مثل قطع بتن ریزی و عدم پیوستگی

ب) ترک

2-درزهای حرکتی:

الف) انبساط حرارتی

ب) انقباض

ج) فرعی ترکیبی

بنا به نوع درزها 2 نوع واتر استاپ داریم که شامل تخت که در وسطش حفره نمی باشد.

همه واتر استاپ ها آج دارند که باعث چسبندگی و افزایش طول مسیر آب می باشند و نوع آنها با توجه به نوع درز تعیین می شوند.

در واتر استاپ هایی که در وسطش حفره دارند، حفره دقیقا وسط درز حرارتی انبساطی می افتد که جلوگیری از بازی کردن درز میشود .

انواع واتر استاپ ها از لحاظ محل قرار گیری در مقاطع بتنی به انواع زیر تقسیم می شوند:

الف) واتر استاپ های میانی

ب) واتر استاپ های کفی (کف استخر،آب بندی استخر)

ج) واتر استاپ های روکار

نکته: در درزهای انبساطی واتر استاپ ها مستقیما با آب در تماس هستند ولی در درزهای اجرائی اینگونه نیست.

عوامل موثر در تعیین اشکال و ابعاد واتر استاپ ها

• نوع و اندازه درز

• محل قرار گیری واتر استاپ ها در مقطع بتنی

• ضخامت قطعه بتنی که واتر استاپ ها در آن قرار دارند

• فشار هیدرواستاتیک درون سازه

نکته 1: دو گوه انتهایی واتر استاپ ها نقش بسیار مهمی در جلوگیری از عبور آب دارد،چون گوه های وسطی که در کشش قرار می گیرند تخت می شوند ولی انتها هیچ تغییری نمی کند.

نکته 2: واتر استاپ به هیچ وجه خم یا سوراخ نمی شود. این واتر استاپ ها را باید از بالا و پایین کاملا مهار شود.

ساده ترین راه همپوشانی (Overlap) هرچقدر که Overlap زیاد باشد به خاطر آج ها دو سر کاملا بر هم منطبق نمی شوند.

بهترین راه Overlap توسط جوش لب به لب توسط دستگاه مخصوص هویه برقی می باشد به این صورت است که دو سر واتر استاپ را ذوب می کنند و به هم می چسبانند.

نکته: دقت شود که واتر استاپ باید ذوب شود نه اینکه بسوزد.

نکته: دقت شود که در هنگام ذوب گاز سمی متصاعد می شود و باید در فضای باز و از ماسک استفاده شود.

مراحل کار: هنگام ذوب کردن هر دو لبه به طور همزمان توسط المانی که وسطش می گذاریم و با گرما می شود.

واتر استاپ در محل عمود بر درز در کشش است و ما در مورد مقاومت کششی این محل اتصال نداریم.

آزمایش کنترل کیفیت واتر استاپ

دو قطعه I شکل از واتر استاپ در هر دو جهت آنها بریده می شود و مورد بررسی قرار می گیرد.

نکته: افزایش طول در زمان بریدگی و مقاومت مهم است.

در سالهای گذشته ار واتر استاپ های مسی استفاده می شد که راحت پاره می شدند و در جوش دادن آنها به مشکل بر می خوردند و در ضمن گران بودند و استفاده از آنها به صرفه نبود.

واتر استاپ های P.V.C در مقابل اشعه ماوراء بنفش خشک و شکننده می شوند.

از ویژگی های واتر استاپ های مرغوب می توان به موارد زیر اشاره کرد:

• دارای رنگ روشن باشد (چون رنگ تیره از جنس مواد کهنه می باشد)

• سطح آنها حتما آجدار باشد

• زیر تابش مستقیم نور خورشید قرار نگیرد.

• به هیچ وجه سطح آن چرب نباشد.

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


ارزیابی زیست محیطی پیامدهای کاهش دوام سازه های بتنی


 مقدمه:

امروزه با گسترش  و افزایش حجمی، مالی، اهمیت و زمان پروژه عمرانی در سطح دنیا و ایران از یک سو و از سوی دیگر جایگاه بتن به عنوان پر مصرف ترین  ماده و مصالح مصرفی در این پروژه­ها، باعث گردیده تا دست اندرکاران و متخصصین این عرصه نگاهی ویژه در مواجهه با این مصالح مصرفی داشته باشند. بتن که با بهره­گیری از مزایای منحصربفردی چون دسترسی نسبی آسان، هزینه­ی اجرایی مناسب، مقاومت در برابر حرارت و آب، شکل پذیری بالا و ... همواره از سوی طراحان و مهندسین اجرایی براساس مشخصه مقاومت ارزیابی و دسته بندی می­گردد. لذا در سال­های اخیر با توجه به تنوع­ زیاد محیطی محل­های اجرایی سازه­هایی هم­چون مناطق ساحلی، مناطق با آب و هوای گرم و یا سرد، سازه­های آبی، سازه­های حرارتی، سازه­های نیروگاهی و هسته­ای، سازه­های دریایی و ... که هر یک دارای شرایط  و تاثیر گذاری متفاوت بر سازه­های مذکور می­باشند که به صورت ملموس می­تواند تاثیری پررنگ بردوام و عمر بهره برداری سازه­ها داشته باشد، کارشناسان را به فکر لحاظ فاکتورهای دوامی در طرح اختلاط بتن فرو برده است. بدیهی است با توجه به اینکه سازه بتونی چه در مراحل ساخت مصالح اولیه بتن مانند کارخانه­های فولادسازی، کارخانه سیمان، سنگ شکن­ها و کارخانه­های تولید مواد شیمیایی و پوزولانی، حمل و سیستم­های انتقال مصالح به پروژه­ها، اجرا و تخریب سازه­های مستهلک، می­تواند تولید کننده و وارد کننده حجم بالای آلودگی به محیط زیست باشند و هم چنین عدم بازیافت مناسب از سازه­های تخریبی، باعث می گردد دوام بهره برداری پایین تر از معیارهای پیش بینی شده و جهانی، اثرات مخرب زیادی بر محیط زیست و تولید پسماندهای مضاعف داشته باشد.

 

2. دوام سازه های بتنی:

دوام یا پایایی بتن متناظر با سن یا عمر خدمت رسانی آن در شرایط محیطی مشخص به شمار می­آید. بدیهی است با تغییر شرایط محیطی حاکم بر بتن، مفهوم دوام بتن تغییر می کند.  طبق تعریف ACI 201 ، دوام بتن حاوی سیمان پرتلند به توانایی آن برای مقابله با عوامل هوازدگی، تهاجم شیمیایی، سایش و یا هر فرآیندی که به آسیب دیدگی می­انجامد، گفته می­شود. بنابراین، بتن پایا بتنی است که تا حدود زیادی شکل اولیه و کیفیت و قابلیت بهره­برداری و خدمت رسانی خود را در شرایط محیطی حاکم حفظ نماید. اکنون لزوم منظور نمودن مشخصات دوامی مصالح مصرفی در سازه­ها همانند مشخصات مکانیکی پذیرفته شده است که همراه آن هزینه نیز منظور می­گردد. سازه­هایی هم­چون رویه­های بتنی راه، فرودگاه و پارکینگ­ها، بتن­ سیلوهای غلات و سیمان و سایر مصالح معدنی، پل­های راه و راه آهن، باراندازها و اسکله­های بتنی و پل­های ارتباطی آن، مخازن آب یا نفت و گاز مایع و غیره، جداول بتنی و قطعات نیوجرسی، قطعات پیش ساخته­ای همانند تراورس و لوله­های بتنی آب و فاضلاب، سازه­های بتنی فراساحلی، سدهای بتنی و سرریزها، پوشش بتنی پیش ساخته و درجا برای تونل­های راه و راه آهن و انتقال آب، سازه­های بتنی تصفیه خانه­های آب و فاضلاب، سازه­های بتنی راکتورهای اتمی و تاسیسات وابسته به آن، کانال­های انتقال آب و آبروهای بتنی، دودکش­ها و برج­های مخابراتی بتنی، ساختمان­ها و بناهای مسکونی، تجاری، اداری و آموزشی، فرهنگی و ورزشی، نیروگاه­های آبی، گازی و حرارتی، برج­های خنک کن باز و بسته نیروگاه­های حرارتی، سازه­های مرتبط با صنایع مختلف مانند سیمان، نفت و گاز، فولاد، شیشه و صنایع مختلف کشاورزی و غذایی، ساخت قطعات پیش ساخته غیرمسلح یا مسلح برای حفاظت از موج شکن­ها و تاسیسات بندری و غیره از جمله مواردی است که مصرف بتن با دوام و قطعات بتنی با عمر زیاد را می طلبد. هرچند از دیرباز مسئله دوام مصالح ساختمانی اهمیت داشته است اما بعد از جنگ جهانی دوم و به ویژه از دهه 70 میلادی با افزایش اهمیت مسائل زیست محیطی و کنترل آلودگی­ها  به موضوع دوام بتن بیش از پیش پرداخته شده است و مرتباً بر اهمیت آن افزوده می­گردد. [ 1 ]

لذا پر واضح است که با توجه حجم بالای تولید آلودگی در روند تولید مصالح اولیه ساخت بتن که بعضاً  روند تولیدی تعدادی از آن­ها از منظر حجم و نوع پسماند خروجی از  مخاطره ساز ترین صنایع در سطح دنیا شناخته می­شوند کاهش عمر مفید این سازه­ها تا چه حد می­تواند آثار زیان باری با خود به همراه داشته باشد. از این رو جا دارد تا در ایران نیز به عنوان کشوری در حال توسعه بیش از پیش به مبجث دوام پرداخته گردد.

 

3. بررسی انواع پسماند  و آلودگی­های هوا در چرخه ساخت، بهره برداری و بازیافت سازه­ های بتنی:

3-1. پسماندها و آلودگی هوا  ناشی از تولید مصالح اولیه:

3-1-1. استخراج ، تولید و حمل سیمان :

بخش صنعت به خصوص صنعت سیمان از جمله بخش­های عمده مصرف کننده انرژی پس از بخش­های خانگی، تجاری و حمل و نقل می­باشد. مصرف زیاد سوخت­های فسیلی جامد، مایع و گاز در کارخانجات این بخش و همچنین در نیروگاه­ها جهت تامین برق مورد نیاز کارخانه­های سیمان علاوه بر پر هزینه شدن تولید، در ایجاد آلاینده­های مختلف همچونCO2،NOX ، فلزات سنگین و فاضلاب­های صنعتی و .... نقش مهمی را ایفا خواهد نمود. میزان انتشار آلاینده­ها که حاصل سوختن سوخت­های فسیلی است، در محیط زیاده بوده و اثرات زیست محیطی زیانباری را از جمله آثار گلخانه ای، باران­های اسیدی و مرگ و میر انسان­ها و سایر موجودات را به همراه خواهد داشت. 

 

 
3-1-2. پسماند و آلودگی­های محیط در صنعت سیمان :

تولید سیمان بطور غیر قابل اجتناب یک فرایند پسماند زا و آلوده کننده محیط زیست می­باشد. پسماند وآلودگی­های اصلی شامل ضایعات مواد اولیه تولید سیمان، پسماند ناشی از سوخت­های فسیلی، فاضلاب­های صنعتی، پسماند مصالح ساختمانی ناشی از تعمیرات در کوره­ها و سایر بخش­ها، فاضلاب­های ساختمانی و بیمارستانی، دفع روغن و مواد ضایعاتی و تعمیرات ماشین آلات، نشت سوخت و هیدروکربن­ها از مخازن زیرزمینی،  دی اکسید کربن ( CO2 )، دی اکسید سولفور ( SO2 )، اکسید های ازت ( NOX )، مونوکسید کربن ( CO ) و هیدروکربن­های سوخته، فلزات سنگین، ترکیبات آلی ( از قبیل در اکسین­ها و فوران­ها، گرد و غبارهای خروجی از دودکش­ها، هالوژنه­ها، سر و صدا، آب ریزش­ها و ضایعات تولیدی مثل آجرهای مستعمل و غبار کوره می­باشد. [ 2 ] در جداول شماره 2، 3، 4، 5 و 6  به انواع آلودگی­های تولیدی و در شکل شماره 1 به بخش­های مختلف فرآیند تولید سیمان و آلودگی­های آن  اشاره شده است.

  
3-1-3. استخراج، تولید و حمل فولاد :

اساساً واحدهای تولید فولاد در مرحله بهره برداری با توجه به فرآیند به کار گرفته شده، آلاینده­های گوناگونی تولید نموده و به صورت­های مختلف شرایط نامطلوب و زیان آور محیط کار و محیط زیست ایجاد می­کند. منبع اصلی پسماند و آلاینده­های هوا در صنعت فولاد پسماندهای ناشی از استخراج مواد از مواد اولیه، نشت سوخت از مخازن، مصالح ضایعاتی ناشی از تعمیرات، روغن، قطعات و.... تعمیرات ماشین آلات و تجهیزات مکانیکی با توجه به استهلاک بالا، لجن اکسید آهن، نرمه آهن اسفنجی، ضایعات صنعتی، نرمه گندله سنگ آهن و کوره ی ذوب قراضه­ها می باشد. ماهیت و کیفیت پسماند و آلاینده­های هوا  به میزان استهلاک و عمر کارخانه وتجهیزات و ناخالصی­هایی مثل رنگ، روغن، لاستیک، پلاستیک، فلزات سمی و سایر مواد خطرناک در مواد قراضه بستگی دارد. آلاینده­های اصلی هوا در دود ناشی از کوره­ها، ذرات معلق هستند. فاکتور انتشار مواد معلق برای عملیات تولید کنترل نشده آهن و فولاد مطابق گزارش EPA برای کوره الکتریکی ( بدون لوله دم اکسیژن ) حدود 019/0 تا 19 کیلوگرم به ازای هر تن قراضه است. در صورتی که نسبت قراضه به محصول 07/1 درصد در نظر گرفته شود فاکتور انتشار باید حدود 02/0 یا 20 کیلوگرم در هر تن محصول باشد. گروه بانک جهانی میزان متوسط 10 کیلوگرم گرد و غبار به ازای هر تن فولاد را با دامنه حدود 35-5 کیلوگرم در تن برای کوره الکتریکی بسته به عواملی مثل ویژگی­های کوره و کیفیت قرضه ها، گزارش می­کند. [ 6 ]

بخش­ها و مراحل مختلف تولید کننده آلودگی صوتی، هوا و پساب در صنعت فولاد :

    حمل و نقل مواد اولیه
    دپو ذخیره سازی مواد اولیه
    بکار گیری مواد اولیه در فرآیند تولید
    مرحله ذوب
    خروج مواد مذاب و قالب گیری
    تولید سرباره
    انتشار ذرات فولاد
    خنک کردن دستگاه­ها
    تولید فاضلاب بهداشتی
    تولید فاضلاب صنعتی
    پیش حرارت دادن پاتیل
    جوشکاری و عملیات برش شعله گاز
    حمل و نقل جهت بازار [ 6 ]

 

3-1-4. استخراج و حمل سنگ دانه­ها :

      برداشت روز افزون از معادن سنگ چه در قالب شن و ماسه­های کوهی و یا رودخانه صرف نظر از میزان آلودگی­های ناشی از فرآوری انجامی، باعث تغییرات زیادی در چرخه اکوسیستم  طبیعت و بطور خاص رودخانه­ها و جانوران وابسته به آن می­گردد، که بی شک در بلند مدت می­تواند اثرات سویی بر این چرخه داشت. پسماند و آلودگی­های ناشی از استخراج سنگ دانه­های مصرفی در بتن شامل شن و ماسه در چند بخش قابل بررسی و تقسیم بندی می­باشد.

آلودگی­های ناشی از احتراق سوخت دستگاه­های سنگ شکن؛ پسماند آب­های شست­وشو سنگ دانه­ها به منظور جدا سازی خاک و مواد زائد؛گرد و غبار ناشی از شکست مکانیکی سنگ دانه­ها؛ نشت سوخت مخازن مستهلک؛ آلودگی های ناشی از حمل و نقل داخل کارگاهی سنگ دانه­ها؛ آلودگی­های صوتی ناشی از فعالیت­های مکانیکی سنگ شکن­ها؛ پسماندهای ناشی از استهلاک بالای سنگ شکن­ها و روغن و قطعات تعویضی؛ پسماند ناشی از فاضلاب نیروی انسانی شاغل در این کارگاه­ها.

       در اینجا با توجه به اینکه بخش­های  زیادی از آلودگی­های ایجاد شده از استخراج و حمل سنگ دانه­ها  با سایر مصالح مشروح پیشین مشابه می­باشد ، صرفا به بررسی آلودگی­های صوتی ایجاد شده  در فرآوری سنگ دانه­ها، در قالب دو جدول 7 و 8 و همچنین میزان صدای عمومی در قسمت­های مختلف معادن و مقادیر صدا در باند فرکانسی 8000-125 در مشاغل مختلف معدنی می­پردازیم :

      
3-1-5. تولید و حمل مواد افزودنی بتن :

در حال حاضر افزودنی­های بتن به صورت فراگیر و رو به افزایشی در بتن به مصرف می­رسد. این افزودنی­ها به دو صورت مایع و جامد به مصرف می­رسند و به بتن ساز کمک می­کنند که نیازهای خاص اجرایی و بهره برداری خود را پوشش دهد. این افزودنی­های شیمیایی ( افزودنی­های معدنی از این بحث خارج بوده و آلودگی و پسماند آن­ها بیشتر در زمان ساخت بتن مورد توجه می­باشد ) مانند تولید سایر مواد شیمیایی دارای اثرات زیست محیطی می­باشند.

ضایعات پلیمری؛ نشت سوخت از مخازن؛ کاتالیست­ها؛ جاذب­ها؛ فربال­های مولکولی و رزین­ها؛ روغن زائد و تعویضی؛ خاک­های رس و افزودنی­های پودری؛ لجن و فاضلاب­ها؛ کک و هیدروکربن­ها؛ زائدات تعمیراتی و OVERHAUL،  بشکه­های مواد بسته بندی و غیره؛ آلودگی­های ناشی از احتراق سوخت­ها و... فاضلاب­های صنعتی و انسانی؛ آلودگی­های حمل و نقل [ 8 ]

 

3-2. پسماندهای ناشی از تولید و اجرای بتن :

فرآیند تولید و اجرای بتن در کارگاه به علت برنامه ریزی، کنترل، پیش بینی­های ناکافی و عدم دقت در مشخصات همواره ایجاد کننده بخش عمده­ای از پسماند و آلودگی هوا در عرصه سازه­ های بتنی می­باشد.

روغن و ضایعات ناشی از تعمیرات بچینگ؛ ماشین آلات حمل و پمپ بتن ریزی؛ پرت سیمان در محیط به صورت دوغاب و یا گرد؛ نشت افزودنی های شیمیایی در زمین؛  گرد وغبار ناشی از پودر میکروسیلیس و استنشاق توسط کارگران با اثرات تنفسی و سرطان زا؛ پسماند بسته بندی سیمان و مواد افزودنی؛ گازهای ناشی از احتراق سیستم سوخت در بچینگ؛ تراک میکسر و پمپ­های بتن؛ فاضلاب­های انسانی ناشی از حمام؛ دستشویی و آشپزخانه؛ فاضلاب­های ناشی از شست­وشو ماشین آلات؛ پساب ناشی شست­وشو مصالح سنگی برای کاهش SE و خنک کردن مصالح؛ پساب ناشی از کیورینگ بتن؛ پرت های بتن های اضافه برنیاز به علت برآورد اشتباه و آماده نبودن کار و تخلیه آن در محیط زیست؛ پسماند ناشی از ظروف یک بار مصرف و سایر ضایعات کارگری.

 

3-3. بازیافت مصالح ناشی از تخریب پس از اتمام زمان بهره برداری یا عدم برخوداری از مشخصات مورد نیاز :

    در حال حاضر در بسیاری از کشورهای پیشرفته و بخش­های زیادی از صنایع  فرآیند بازیافت از منظر اقتصادی و محیط زیستی، بصورت جدی مورد توجه بوده و صورت می­پذیرد. لذا در کشورهای در حال توسعه و جهان سوم این امر هنوز به طور جدی انجام نمی­گیرد. بازیافت مصالح ساختمانی از جمله بتن نیز از این قاعده جدا نیست.

واقعیت این است که هر سازه و محصولی پس از پایان عمر مفید خود چه به صورت زودرس و چه طبق مشخصات تولیدی دو راه پیش رو دارد، یا به عنوان پسماند وارد طبیعت گردیده و یا در قالب بازیافت تمام و یا بخشی از آن مجدداً وارد چرخه مصرف می­گردد. که این بازیافت از دو زاویه حفظ منابع طبیعی موجود و عدم تولید حداکثری پسماند قابل توجه می باشد. در خصوص بتن نیز این امکان وجود دارد تا با انجام فرآیندهای لازم و آزمایش­های مورد نیاز در تولید مجدد بتن مانند جایگزینی با مصالح سنگی، استفاده از آهن آلات و میلگردها و ... ، مورد استفاده قرار گیرد.

 

3-4. لزوم نگرش دوام محوری:

       با اندکی تامل در موارد ذکر شده مشخص می­باشد که هر مترمکعب بتن مصرفی در کارگاه به عنوان محصول تمام شده، در مراحل ساخت تا چه حد می تواند آلوده سازی محیط نقش داشته باشد. بدیهی است که کاهش عمر سازه­های بتنی به دلایلی چون عدم توجه به مسائل طراحی و اجرا به هر میزان باعث می­گردد این چرخه تولید پسماندها، افزایشی بیش از آنچه در استانداردهای عمرانی انتظار می­رود باشد. لذا به نظر می­رسد بهترین راه در حفظ منابع طبیعی که بعضاً تجدید ناپذیر می­باشند و نیز جلوگیری از آلوده سازی و تخریب مضاعف محیط زیست، تقویت نگاه­های دوام محور به منظور افزایش عمر بهره برداری سازه­ها، چه در فاز طراحی و چه در فاز نظارت و اجرا می­باشد. در ذیل به آیتم­های موثر در کاهش عمر سازه­ها و نیز راهکارهای پیشنهادی برای رفع و پیشگیری در برابر آن­ها اشاره می­گردد:

 

3-4-1. عوامل موثر بر کاهش دوام سازه­ های بتنی:

نمکها؛ اسیدها؛  گازهایی نظیر گاز کربنیک؛ پوشش نا کافی بتن بر روی فولاد؛ کیفیت پایین عمل آوری بتن؛ بار اضافی؛ آب  و رطوبت؛ فرآیند یخبندان بتن؛ خوردگی میکروبی SRB ؛ باکتری­های اکسید کننده گوگرد.

 

3-4-2. عوامل و پیش نیازهای موثر در تامین دوام سازه­های بتنی :

تأمین سرمایه؛ تأمین دانش فنی و نیروی انسانی متخصص؛  شناخت مصالح و مواد اولیه؛ شناخت عوامل فساد بتن؛ شناخت اقلیم و عوامل محیطی؛ تهیه مصالح و مواد مناسب و نگهداری آن­ها در شرایط خوب و استاندارد؛ تحقیقات: تحقیقات خود دو جزء که بهینه سازی و جایگزینی مواد جدید مقاوم در برابر عوامل فساد بتن و پیدا کردن روش­های جدید مبارزه با فساد بتن می­باشد را شامل می­شود؛ طرح اختلاط بتن؛ تولید، اجرا و عمل آوری بتن؛ نگهداری.

 

نتیجه گیری:

از نظر نویسنده، با توجه به محدودیت­های منابع طبیعی، لزوم و اهمیت حفظ محیط زیست و منابع موجود ، لازم و ضروری است با تامین و بهره گیری از فاکتورهای لازم و ذکر شده در مباحث و بالا بردن دانش فنی دست اندرکاران چون کارفرمایان، طراحان، مشاوران و پیمانکارن در بخش­های دولتی و به خصوص بخش خصوصی به علت در اختیار داشتن حجم بالایی از ساخت و ساز، نسبت به اعمال کنترل­های دقیق و کاربردی علاوه بر کنترل­های موجود در طرح اختلاط بتن­ و اجرای آن، چون نفوذپذیری، مقاومت الکتریکی و ... اقدام میدانی گردد. البته در حال حاضردر برخی از پروژه­ها این کنترل­ها صورت می پذیرد، لذا آن­چه ضروریست انجام این کنترل­ها به صورت فراگیر می­باشد. پر واضح است این امر در کنار لحاظ سایر موارد مورد نیاز چون اعمال پوشش و  نیز سایر موارد ذکر شده در مقاله می­تواند باعث افزایش حداکثری عمر سازه­های بتنی و به تبع آن حفظ منابع موجود گردد. از این رو به نظر می رسد آموزش و آشنایی دست اندرکاران این عرصه  باعث تاثیر مختلف این امر در سازمان­های ذیربط چون سازمان نظام مهندسی و دانشگاه می­تواند تا حدود زیادی موثر واقع گردد.

 

منابع و مراجع :

[ 1 ]  تدین ، محسن.(1384)، دوام سازه های بتنی ،کنفرانس بتن و توسعه .

[ 2 ] کریمی، مهرداد.، و افسریان، سید محمد.، وجهان زاده، حسن.(1391)، آلودگی های صنعت سیمان، اولین کنفرانس صنعت سیمان انرژی ومحیط زیست.

[ 3 ] بختیاری، نوبخت. (1391)، بررسی تاثیر عملکرد پروژه های عمرانی در آلودگی محیط زیست ، اولین کنفرانس صنعت سیمان انرژی ومحیط زیست

[ 4 ] سادات ضیاء جهرمی،شیما.، و هاشمی، سید حسین.( 1390)،  بررسی ،فرآیند ها و آلاینده های صنعت سیمان و مدیریت و کنترل آن. پنجمین همایش ملی و نمایشگاه تخصصی محیط زیست.

 [ 5 ] دیانی، علیرضا.، و رضایی، علی. (1391) ، صنعت سیمان و مسئولیت های زیست محیطی ، اقتصادی و اجتماعی آن . اولین کنفرانس صنعت سیمان انرژی ومحیط زیست.

[ 6 ] قاصدی، آذر.، و قاصدی، آتس سا.، و قربانی، سمانه.، و فلاح، قرشید.( 1388)، بررسی تومان اثرات زیان آور محیط کار و اثرات زیست محیطی ناشی از آلودگی هوا در صنایع فولاد . دوازدهمین همایش ملی بهداشت محیط زیست ، دانشگاه علوم پزشکی شهید بهشتی.

[ 7 ] حیدریان مقدم، محمد.( 1373)، بررسی میزان صدا و صدا در معادن سنگ  آهن مرکزی ، پژوهنده (4 ) 76 ، ص 31-27.

[ 8 ] مومنی، علی.، و ناصریان،سیروس.(1390)، مدیریت پسماند در پتروشیمی بندر امام. پنجمین همایش ملی و نمایشگاه تخصصی محیط زیست.

 

 

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


بتن آرمه و تاریخچه آن


• مصالح ساختمانی گوناگونی از دیرباز توسط انسان مورد استفاده قرار گرفته است. در این میان شاید بتوان از چوب، سنگ، فولاد و بتن به عنوان پرمصرف ترین مصالح ساختمانی نام برد. بتون که در حقیقت یک نوع سنگ ساخته دست بشر است، از مقاومت فشاری قابل قبول و مقاومت کششی بسیار پایین (در حدود 10% مقاومت فشاری) برخوردار است. از طرفی در بسیاری از قطعات سازه ای، کشش مستقیم ویا کشش ناشی از خمش ایجاد می شود. به همین جهت برای جبران ضعف مقاومت کششی بتن، ایده ی بتن مسلح ابداع شده است. در این روش، در هر قسمت که قطعه ی سازه ای تحت کشش (کشش مستقیم یا کشش ناشی از خمش) قرار گیرد، از فولاد به عنوان یک ماده ی مقاوم در مقابل کشش ایجاد شده، استفاده میگردد.

• اگرچه ایده ی اولیه در ابداع بتن مسلح، اگذاری نقش مقاومت در مقابل تنش های کششی به فولاد بوده است؛ با این وجود فولاد می تواند به عنوان یک عنصر کمکی در تحمل فشار نیز در کنار بتن قرار گیرد. به همین دلیل میلگردهای مسلح کننده در قطعات فشاری نظیر ستون ها و یا حتی در ناحیه فشاری تیرها به عنوان فولاد فشاری نیز به کار رود.

• توجه شود که در یک مقطع بتن آرمه، ممکن است ترک های کششی در ناحیه کششی بتن و در جهت متعامد نسبت به جهت تنش های کششی ایجاد شوند. این ترک ها ممکن است از میلگردهای کششی نیز عبور کرده و تا نزدیکی های تار خنثی بالا روند. با این وجود، معمولا عرض این ترک ها بسیار محدود بوده (کوچکتر از 3/0 میلی متر) و در عملکرد قطعه بتن مسلح دخالت نمی کنند.

• سازگاری بتن و فولاد

• بتن و فولاد سازگاری قابل توجهی برای تشکیل یک جسم مرکب دارند که در این میان می توان به موارد زیر اشاره کرد:

• الف- ضریب انبساط حرارتی بتن و فولاد بسیار به هم نزدیک است؛ به همین دلیل تحت تاثیر تغییرات دمای متداول، تنش های قابل توجهی بین آنها ایجاد نمی شود.

• ب- بتن و فولاد چسبندگی بسیار خوبی با یکدیگر داشته و بین آن دو معمولا لغزش اتفاق نمی افتد؛ بنابراین می توانند عملکرد مرکبی با یکدیگر داشته باشند و همانند یک جسم واحد عمل کنند. چسبندگی بسار خوب بین بتن و فولاد، ناشی از چسبندگی شیمیایی بین دو ماده، و نیز ناصافی های سطحی و برآمدگی های آج میلگرد می باشد.

• ج-فولاد ماده ای است که به راحتی در معرض خوردگی شیمیایی قرار می گیرد؛ در حالی که بتن معمولا نفوذ ناپذیری قابل قبولی دارد و می تواند فولاد مسلح کننده را در مقابل خوردگی محافظت نماید.

• د- مقاومت فولاد در مقابل دمای آتش بسیار پایین است؛ در حالی که پوشش بتن که روی میلگرد ها قرار گرفته است، مقاومت بسیار خوبی در مقابل

• اتش سوزی ایجاد می کند.

• پیشینه تاریخی بتن آرمه

• اگر چه گفته می شود سیمان از دیرباز توسط ایرانیان و رومانیان به عنوان یک ماده ساختمانی به کار گرفته می شده است، اما سابقا ثبت سیمان پرتلند به جوزف آسپیدین انگلیسی در سال 1824 بر می گردد. از آن پس بتن غیر مسلح برای سالها به عنوان یک مصالح ساختمانی خوب، تولید شد.

• سابقه استفاده از بتن مسلح به سال 1850 بر می گردد که جوزف لامبوت فرانسوی یک قایق بتنی را که با شبکه ای از سیم های موازی مسلح شده بود، تولید کرد. با این حال اختراع بتن آرمه معمولا به جوزف مونیر فرانسوی نسبت داده می شود. وی در سال 1867، ابداع ساخت حوضچه ها و مخازن بتنی مسلح به شبکه ای از سیم آهنی را برای خود ثبت نمود. از آن به بعد مونیر تا سال 1881،موارد متعددی از کاربرد بتن مسلح را از جمله در ساخت لوله ها و تانک ها، صفحات و دال های مسطح، پل های عابر پیاده، قوس ها، ساختمان ها و اجزاء رابط خطوط آهن به نام خود به ثبت رساند. با این وجود گفته می شود که وی دانش مربوط به رفتار بتن آرمه و یا روش مناسب جهت محاسبات طراحی را نداشته است.

• در آمریکا ویلیام وارد نخستین ساختمان بتن آرمه را در سال 1875 در نیویورک بنا نمود. همچنین تادیوس هیات که در ابتدا یک وکیل بود، در دهه 1850 تجربیاتی را در مورد تیر بتن آرمه انجام داد. وی میله های آهنی را در ناحیه کششی تیر قرار داد و در نزدیکی تکیه گاه آن را به طرف بالا خم کرده و در ناحیه فشاری محار نمود. او همچنین میله های قائمی را در نزدیکی تکیه گاه ها برای تحمل برش به کار برد. هیات در سال 1877 یک کتاب 28 صفحه ای در ارتباط با موضوع تحقیقات خود منتشر کرد.

• همچنین رانسام در دهه 1870 در شهر سانفرانسیسکو مواردی از استفاده از بتن آرمه تجربه نمود. وی در سال 1884، استفاده از میله های آجدار را با پیچاندن میله هایی با سطح مقطع مربعی و به منظور فراهم نمودن چسبندگی بهتر بین فولاد و بتن، به نام خود ثبت کرد. همچنین وی در سال 1890، ساختمان یک موزه دو طبقه به طول 95 متر را به صورت بتن آرمه بنا نمود. این ساختمان در زلزله سال 1906 سانفرانسیسکو و نیز در آتش سوزی متعاقب این زلزله، آسیب جزئی دید که این عملکرد و نیز عملکرد مناسب سایر ساختمان های بتن آرمه در آن زلزله و آتش سوزی متعاقب، منجر به اقبال عمومی به این سیستم جدید ساختمان سازی گردید.

• در سال 1903، تشکیل یک کمیته مشترک از نمایندگان سازمان های علاقه مند در زمینه بتن آرمه در آمریکا، نقطه شروعی برای همگانی کردن دانش طراحی بتن آرمهبود. از آن به بعد در دهه اول قرن بیستم، آزماشات متعددی توسط دانشمندان در آمریکا و اروپا جهت تعیین مقاومت فشاری بتن، و مدول الاستیسیته بتن انجام گرفت. از سال 1916 تا 1935، بیشتر تحقیقات بر ستون های بتن آرمه با بار خارج از محور، شالوده بتن آرمه و نیز مقاومت نهایی تیرها بیشتر مورد توجه محققین قرار گرفت.

• از آن به بعد و تاکنون تحقیقات بسیار زیادی در زمینه رفتار قطعات و سازه های بتن آرمه انجام گرفته است. هزاران رساله کارشناسی ارشد و دکترا در این زمینه در دهه های اخیر به رشته تحریر در آمده است. با این وجود به اعتقاد نگارنده، هنوز ناشناخته های فراوانی در زمینه رفتار اجزاء بتن آرمه وجود دارد. از همین رو در حال حاضر نیز بسیاری از تحقیقات زنده ی دانشگاه های معتبر و مراکز تحقیقاتی دنیا در زمینه اجزاء و قطعات بتن آرمه معطوف می کردد.

• مزایا و معایب بتن آرمه

• مصالح مختلفی مثل فولاد، چوب، مصالح بنایی و بتن ممکن است به عنوان گزینه هایی برای ساخت یک بنا مطرح باشند. این گزینه ها برای بسیاری از سازه های متداول وجود دارند؛ اگر چه در ساخت اسکلت سازه های بلند، ممکن است به فولاد و بتن محدود گردند. با این وجود امروزه بتن آرمه به عنوان یک گزینه قابل اعتماد برای ساخت بسیاری از سازه های کوچک و بزرگ محسوب می گردد؛ به طوری که شاید بتوان از آن به عنوان مهم ترین ماده ساختمانی موجود با کاربردی فراگیر در تمام دنیا نام برد.

• امروزه بسیاری از ساختمان های کوچک و بزرگ، پل ها، سد ها، تونل ها، کانال ها، مخازن و تانک ها، دیوارهای حائل، لوله ها و روسازی ها از بتن آرمه ساخته می شود. موفقیت قابل توجه بتن آرمه نسبت به سایر مصالح ساختمانی و به خصوص فولاد در کاربرد فراگیر آن را می توان مرهون موارد زیر دانست:

1-بتن مقاومت فشاری قابل قبولی در مقایسه با بسیاری از مصالح ساختمانی دیگر دارد.

2-تمامی اجزاء تشکیل دهنده بتن(به جز سیمان) به عنوان مصالح محلیو ارزان قیمت محسوب می شوند. تقریبا در همه جا می توان آب، ماسه و شن را از فواصل نزدیک به محل بتن ریزی حمل نمود که این مساله منجر به سهولت و رغبت بیشتر به بتن، و ارزانتر تمام شدن آن خواهد شد.

3-بتن را می توان به سهولت به هر شکل دلخواه در آورد. با ساختن قالب مناسب، تقریبا هر گونه مقطع سازه ای و شکل معماری را می توان از بتن آرمه تولید نمود. در مقابل، مقاطع فولادی در ابعاد مشخص و در کارخانه تولید می شوند و تولید مقطع خاص از مصالح فولادی گاه مشکل و یا غیر ممکن خواهد بود.

4-بتن مقاومت بسیار خوبی در مقابل آتش دارد.یک ساختمان بتن آرمه می تواند ساعت ها در مقابل آتش سوزی های مهیب مقاومت کند، بدون آنکه فرو ریزد. این مساله فرصت کافی برای مهار آتش و نیز تخلیه ساختمان از نفرات و اموال را فراهم میکند. در مقابل یک ساختمان فولادی در برابر آتش سوزی کاملا ضعیف خواهد بود. فروریزی برج های دوقلوی نیویورک که در واقعه 11 سپتامبر سال 2001 مورد حمله قرار گرفتند، به دلیل اسکلت فولادی آنها بود. چنانچه این برج ها از مصالح بتن آرمهساخته شده بودند، جان هزاران انسان و نیز میلیون ها دلار ثروت موجود در آنها حفظ می شد.

5-بتن همچنین مقاومت خوبی در مقابل رطوبت و آب دارد. اگر آب در تماس با بتن، حاوی بعضی از یون ها از قبیل یون سولفات و یا یون کلرور نباشد، برای بتن و حتی میلگرد های موجود در بتن، مشکلی ایجاد نمی کند ولی در غیر این صورت باعث تخریب می گردد که نیاز به ترمیم و همچنین مقاوم سازی دارد.

6-اجزاء بتن آرمه از صلبیت بالایی برخوردار هستند. به همین دلیل معمولا ساکنان یک ساختمان بتن آرمه در هنگام وزش شدید باد و یا تحرک زیاد همسایگان، لرزه ای را احساس نمی کنند و آرامش آنها حفظ می شود.

7-اجزاء بتنی در مقایسه با سازه فولادی به صورت ذاتی به محافظت و نگهداری کمتری نیاز دارند. به خصوص اگر بتن ریزی به صورت متراکم انجام گرفته باشد و در قسمت های در تماس با هوا از بتن هوادار استفاده شده باشد، پس از شروع بهره برداری از سازه ی بتن آرمه تقریبا نیاز به مراقبت جدی ندارد.

8-بتن در مقایسه با سایر مصالح ساختمانی، عمر بهره دهی بسیار طولانی دارد اما به شرایطی که در محیطی مطلوب جهت انجام عملیات بتن ریزی باشد قرار گیرد که در صورت نیازها از مواد آب بندی و افزودنی های بتن در صورت نیاز از ترمیم کننده های بتن مورد مصرف قرار گیرد باید در نظر داشت که تحت شرایط مشخص، یک سازه بتن آرمه می تواند برای همیشه بدون کاهش در ظرفیت باربری مورد استفاده قرار گیرد.این مساله مبتنی بر این واقعیت است که بتن در طول زمان نه تنها کاهش مقاومت ندارد، بلکه با گذشت طولانی زمان با تحکیم بیشتر سیمان، افزایش مقاومت نیز داشت. با این وجود، تاثیر عوامل مخرب محیطی و یون های مهاجم ممکن است دوام بتن را در طول زمان به مخاطره بیندازد.

9-بتن در بعضی از اجزاء سازه ای نظیر پی ها، دیواره های زیر زمین و شمع ها، به عنوان تنها گزینه اقتصادی محسوب می شود.

10-اجرای بتن و سازه ی بتن آرمه در مقایسه با سایر مصالح نظیر فولاد و یا حتی چوب، نیاز به نیروهای اجرایی و کارگران با مهارت بالا ندارد.

 

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))