کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

بررسی رفتار غیرخطی دیوار برشی بتنی دارای بازشو به روش طراحی بر اساس سطح عملکرد

یکی از انواع سیستمهای مقاوم در برابر زلزله سیستم دیوار برشی بتنی است که به دلیل عملکرد مناسب آن در زلزله های گذشته مورد توجه مهندسین قرار گرفته است.

اما برخی محدودیتهای معماری مهندس محاسب را مجبور به تعبیه بازشو در دیوارهای برشی می نماید. به ویژه در سازه های بلند دارای هسته مرکزی بتنی، پیرامون اتاق آسانسور محل مناسبی برای نصب دیوار برشی و متصل نمودن آنها در جهت عمود بر یکدیگر و ایجاد نمودن دیوار برشی بالدار می باشد اما به منظور تعبیه درب آسانسور ناچار به ایجاد بازشو در یکی از دیوارها می باشیم که این امر بر رفتار دیوار برشی تاثیرگذار خواهد بود. نسبت ابعاد بازشو و همچنین درصدآرماتور بکار رفته در دیوار از مهمترین عوامل تاثیرگذار بر رفتار غیرخطی دیوار برشی بتنی دارای بازشو می باشند که روشهای نوین طراحی براساس سطح عملکرد، امکان بررسی رفتارغیرخطی و شکل پذیری چنین سازه ای را بخوبی فراهم آورده است.

در تحقیقات گذشته از تیرهای کوپله برای مدلسازی کامپیوتری بازشوها در دیوارهای برشی استفاده شده است، این تقریب به ویژه برای بازشوهای با ارتفاع کم خطای نسبتا زیادی در پاسخهای سازه ایجاد می نماید. لذا برای رفع این نقیصه در تحقیق حاضر دیوار برشی بتنی بصورت یک صفحه دارای سوراخ مدل گردیده و تاثیر نسبت عرض بازشو به عرض دیوار و نسبت ارتفاع بازشو به ارتفاع دیوار بر رفتار غیرخطی سازه، به ازاء درصد آرماتورهای مختلف، به روش طراحی بر اساس سطح عملکرد مورد بررسی قرار گرفته است.

 

ترمیم و تقویت سازه های بتنی توسط دیوار برشی

دیوار برشی فولادی برای مقاوم سازی ساختمان های فولادی در حدود 15 سال اخیر مورد توجه خاص مهندسان سازه قرار گرفته است. ویژگی های منحصر به فرد آن باعث جلب توجه بیشتر همگان شده است ، از ویژگی های آن اقتصادی بودن ، اجرای آسان ، وزن کم نسبت به سیستم های مشابه ، شکل پذیری زیاد ، نصب سریع ، جذب انرژی بالا و کاهش قابل ملاحظه تنش پسماند در سازه را می توان نام برد. تمام دلایل ما را به این فکر آن وا داشت که استفاده از آن را درترمیم ساختمان های بتنی مورد مطالعه قراردهیم. چون این سیستم دارای وزن کم بوده ، به سازه بار اضافی وارد نکرده و حتی با اتصالاتش باعث تقویت تیر وستونهای اطراف خود می شود. همچنین این سیستم نیازی به تجهیزات خاص ندارد و می توان بدون تخلیه ساختمان و تخریب اعضا سازه ای به بقیه اجزای سازه ای وصل شود. البته طراحی این سیستم در ساختمان های بتنی بغیر از حالت ترمیمی اقتصادی به نظر نمی آید. در این مقاله توضیحات اولیه ای از دیوار برشی فولادی جهت آشنایی بیشتر ارائه شده ، و در قسمت های بعدی بررسی رفتار پانلهای برشی فولادی LYP1 در تقویت وترمیم سازه های بتنی مورد مطالعه قرار خواهد گرفت و تفاوت آن با سیستم بادبندی مشابه مورد توجه قرار خواهد گرفت ، و در آخر نتایج آزمایشات بررسی خواهند شد.

 

 

دیوارهای برشی فولادی SSW2 برای گرفتن نیروهای جانبی زلزله و باد در ساختمان های بلند در سالهای اخیر مطرح و مورد توجه قرار گرفته است . این پدیده نوین که در جهان به سرعت رو به گسترش می باشد در ساخت ساختمان های جدید و همچنین تقویت ساختمان های موجود به خصوص در کشورهای زلزله خیزی همچون آمریکا و ژاپن بکار گرفته شده است . استفاده از آنها در مقایسه با قابهای ممان گیر تا حدود 50% صرفه جویی در مصرف فولاد را در ساختمان ها به همراه دارد.

دیوار های برشی فولادی از نظر اجرائی ، سیستمی بسیار ساده بوده و هیچگونه پیچیدگی خاصی در آن وجود ندارد . لذا مهندسان ، تکنسین ها و کارگران فنی با دانش فنی موجود و بدون نیاز به کسب مهارت جدید می توانند آنرا اجرا نمایند . دقت انجام کار در حد دقت های متعارف در اجرای سازه های فولادی بوده و با رعایت آن ضریب اطمینان اجرائی به مراتب بالاتر از انواع سیستم های دیگر می باشد . با توجه به سادگی و امکان ساخت آن در کارخانه و نصب آن در محل ، سرعت اجرای سیستم بالا بوده واز هزینه های اجرائی تا حد بالایی زیادی کاسته می شود .

 

سیستم از نظر سختی برشی از سخت ترین سیستم های مهاربندی که X شکل می باشد ، سخت تر بوده و باتوجه به امکان ایجاد باز شو در هر نقطه از آن ، کارائی همه سیستم های مهاربندی را از این نظر دارا می باشد .

همچین رفتار سیستم در محیط پلاستیک و میزان جذب انرژی آن نسبت به سیستم های مهار بندی بهتر است . در سیستم دیوار های برشی فولادی به علت گستردگی مصالح و اتصالات ، تعدیل تنش ها به مراتب بهتر از سیستمهای مقاوم دیگر در برابر بارهای جانبی مانند قاب ها وانواع مهاربندی که معمولا در آنها مصالح به صورت دسته شده و اتصالات متمرکز می باشند ، صورت گرفته و رفتار سیستم بخصوص در محیط پلاستیک مناسب تر می باشد .

گزارش اولیه تحقیقات انجام شده در تابستان سال 2000 میلادی در آزمایشگاه سازه دیویس هال دانشگاه برکلی کالیفرنیا نشان می دهد ، ظرفیت دیوار های برشی فولادی برای مقابله با خطراتی مانند زلزله ، طوفان و انفجار در مقایسه با دیگر سیستم ها مثل قابهای ممان گیر ویژه حداقل 25% بیشتر می باشد . در آزمایشگاههای تحقیقاتی استفاده گردیده است که ظرفیت آن حدودا 6670KN می باشد . آزمایش های مذکور نشان می دهد ، دیوارهای برشی فولادی دارای شکل پذیری بسیار بالائی هستند . به لحاظ اهمیت موضوع بودوجه این تحقیقات که به منظور دستیابی به یک سیستم مطمئن جهت ساخت ساختمان های فدرال آمریکا برای آنکه بتوانند در مقابل خطراتی مانند زلزله ، طوفان و بمب مقاومت نمایند ، توسط بنیاد ملی علوم آمریکا و اداره خدمات عمومی آمریکا تامین گردیده است .

 

1-شکلی از دیوار برشی فولادی در سازه های فولادی (با سخت کننده و بدون سخت)

2- ساختمان های ساخته شده با استفاده از دیوار برشی فولادی

اولین ساختمان ساخته شده با استفاده از این روش بیمارستانی در لس آنجلس به نام بیمارستان Sylmar بود. یکی از بزرگترین سازه های ساخته شده با سیستم دیوار برشی فولادی ساختمان شینجوکونومورا 3 در توکیو است که این ساختمان دارای 51 طبقه بوده و ارتفاع آن از سطح زمین 211 متر است . 5 طبقه آن درزیر زمین واقع بوده و 27.5 مترآن پایین تر از سطح زمین قرار دارد و ، برای اجتناب از بکارگیری دیوار برشی بتنی ، از سیستم دیوار برشی فولادی در هسته های مرکزی ساختمان که اطراف آسانسور ها ، پله ها و رایزرهای تاسیساتی می باشد ، استفاده گردید.

یکی از کاربردهای این پانلها در تقویت سازه های بتنی در ساختمان مرکز درمانی در چارلستون می باشد این سازه در اثر زلزله 1963 آسیب دیده بود این ساختمان متشکل از ساختمان های متعددی از یک تا پنج طبقه می باشد که زیر بنای آنها نزدیک به 32500 متر مربع است . برای تقویت این سازه از بهترین تیم طراحی وتحقیقاتی استفاده گردید . بعد از بررسی های فراوان این سیستم را با توجه به دلایل زیر مناسب دانستند :

• جلوگیری از اخلال در کار روزانه و کاهش مشکلات برای بیماران ، بعلت سرعت نصب آن

• جلوگیری از کاهش زیر بنای مفید و اتلاف فضاها

• پیش بینی امکان تغییرات در آینده ، زیرا در دیوار برشی فولادی به سادگی می توان تغییرات مورد نظر را اعم از

• جابجائی معماری و یا ایجاد بازشو به خاطر عبور تاسیسات داد

• جلو گیری از ازدیاد وزن سازه

به جز ساختمان های بالا سازه های فراوانی از جمله

ساختمان مرکزی 54 طبقه بانک وان ملون در پیتسبورگ پنسیلوانیای آمریکا

ساختمان مسکونی 51 طبقه واقع در سان فرانسیسکو

ساختمان 25 طبقه در ادمونتون کانادا

ساختمان 32 طبقه بایرهویچ هوس در لورکوزن آلمان (Byer-Hochhaus)

ساختمان 20 طبقه دادگاه فدرال در سیاتل آمریکا

برای تقویت ساختمان بتنی کتابخانه ایالتی اورگ (Oregon state library) را می توان نام برد که در آن برای تقویت ازدیوار برشی فولادی برشی فولادی استفاده شده است .

3- معرفی سیستم دیوار برشی فولادی برای تقویت سازه های بتنی ساخته شده [3]

سال 1995 زلزله در Hugoken-Nanbu4 که زلزله مهیبی بود ، باعث کشته و مجروح شدن انسانهای زیادی شد . ساختمان های بسیاری آسیب جدی دیدند و ساختمان هایی که قبل از سال 1981 و مخصوصا قبل از 1971 ساخته شده بودند ، خسارت شدیدی را متحمل گردیدند و حتی برخی از آنها فرو ریختند .

این امر نشانگراین است که آیین نامه و مقررات قدیمی برای طراحی ساختمان به نحو مناسبی نیروهای زلزله و شکل پذیری سازه ای را در نظر نگرفته اند .

در سال 1999 زلزله در chi -chi تایوان نیز باعث زیان فراوان و تخریب بسیاری از سازه ها شد . دوباره این ساختمان هایی که قبل از سال 1983 طراحی و ساخته شده بودند ، تخریب شدند و بعد از زمین لرزه 1999 تمام مقررات و آیین نامه های زلزله مورد باز بینی قرار گرفته و همه مقررات قبلی لغو شدند . ضرایب لرزه ای منطقه ای در هرناحیه تایوان تولید و ایجاد گردید . برای مثال شتاب زمین لرزه در منطقه Taichung از 0.23g به 0.33g افزایش یافت .

در نتیجه تقریبا همه ساختمانها در Taichung مطابق با مقررات طراحی جدید احتیاج به مقاوم سازی پیدا کردند. هدف این پروژه افزایش و بهبود بخشیدن مقاومت لرزه ای ساختمان های بتن مسلح می باشد . این پروژه شامل سه زیر مجموعه است که شامل :

• پیدا کردن و پی بردن به میزان کمبود مقاومت لرزه ای ساختمان های بتن آرمه موجود بر اساس آیین نامه جدید

• مساله نیروهای وارد بر سازه کناری و همجوار بعلت تغییر مکانهای بیش از اندازه جانبی آنها

• تحقیق در مورد دو روش برای جذب انرژی توسط پانلهای برشی فولادی و بادبند فولادی برای بهبود مقاومت لرزه ای سازه های موجود .

4- مشخصات لرزه ای پانلهای برشی فولادی با نقطه تسلیم پایین (LYP)

استفاده از دیوار برشی فولادی باعث بهبود مقاومت لرزه ای سیستم در طراحی ساختمان های جدید و مقاوم کردن ساختمان های ساخته شده می شود . صفحات فولادی نازک تمایل به کمانش دارند و از این رو ظرفیت جذب انرژی در این رو صفحات محدود است .

اخیرا روشهای جدید و تکنولوژی های بدست آمده در زمینه فلزات ، صفحات فولادی جدید را در دسترس ما گذاشته است . این نوع فولاد دارای تنش تسلیم کمتر افزایش طول بالا می باشند و توانایی تغییر شکل دادن و جذب انرژی بیشتری را قبل از شکستن از خود نشان می دهند . یکی دیگر از ویژگی های آن پایین بودن نقطه تسلیم است که این باعث افزایش ناحیه پلاستیک آن می شود و باعث جذب بیشتر تنش می شود .

 

پانلهای برشی فولادی ساخته شده از LYP توانایی جذب و اتلاف انرژی زیادی را دارند ، و می توانند در ساختمان های جدید مورد استفاده قرار گیرد . این نوع پانلها همانند دیوار برشی فولادی نسبت به نیروهای زلزله طراحی و ساخته می شوند . چون این پانلها دارای ویژگی جذب و اتلاف انرژی بالایی هستند ، می توان از آنها بعنوان میراگر برای میرا کردن انرژی لرزه ای استفاده کرد . این نوع میراگر فلزی در هنگام جذب انرژی استحکام کافی را دارند و همچنین نسبت به میراگرهای که در حال حاضر مورد استفاده قرار می گیرند ، نیاز به نگهداری و تعمیر ندارد .

نقطه تسلیم و نقطه نهایی صفحات LYP هردو تحت تاثیر میزان کرنش وارده است . در این تحقیق تاثیر میزان کرنش و نحوه بارگذاری بر روی مشخصات مقاومت لرزه ای پانل صفحه ای مورد آزمایش قرار گرفته است .

مجموعه آزمایشات انجام شده ، مطالعه روی رفتار پانلهای برشی ساخته شده از فولاد LYP تحت سرعت های بارگذاری متفاوت و جابجایی های نموی ، است .

مطالعات آزمایشگاهی بروی پانل برشی فولاد LYP

پانل فولادی برشی ، ساخته شده از فولاد با نقطه تسلیم پایین ، عامل موثری برای جذب انرژی زیادی است . با طراحی و ساخت مناسب پانلهای برشی فولادی می توان در جذب و تلف کردن مقدار زیادی از انرژی لرزه ای بهره برد . اما رفتار سازه ای این نوع پانل برشی متاثر از شدت کرنشی است .

در 9 نمونه تست شده در آزمایش ، می خواهیم رفتار آنها را در هر یک از نحوه بارگذاری متفاوت مورد ارزیابی قرار دهیم. شکل 2 نحوه طراحی نمونه ها را نشان می دهد . شکل 3 چگونگی آزمایش ها را نشان می دهد . در این نمونه ها نسبت عرض به ضخامت پانل 50 گرفته شده است . لبه های بیرونی اعضا به خاطر جلوگیری از ترک خوردن اتصالات بین لبه و پانل و صفحه پای ستون تراشیده شده است . این کار بخاطر اجتناب تمرکز تنش و سوق دادن صفحه به ناحیه پلاستیک که قبلا بحث آن را کردیم . در این تحقیق تاریخچه بارگذاری پانل برشی فولادی آزمایش و بررسی شده است . سه سرعت بارگذاری 2.5 ، 5 و 10 mm/sec انتخاب شده است.

برای دستیابی به سرعت کرنشی این نمونه ها بارگذاری تدریجی به جای بار لرزه ای اعمال می شود . برای هر سه حالت متفاوت جابه جایی δy ، 2δy و 3δy را در هر دوره بارگذاری آزمایش را می پذیریم . آزمایش روی سازه تا زمانی که مقاومت به زیر % 80 مقاومت نهایی رسید متوقف می شود.

همه چیز درباره ی بتن

تولید سیمان که ماده اصلی چسبندگی در بتن است در سال 1756 میلادی در کشور انگلستان توسط «John smeaton »که مسئولیت ساخت پایه برج دریایی «Eddystone » را بر عهده داشت آغاز شد و درنهایت سیمان پرتلند در سال 1824 میلادی در جزیره ای به همین نام در انگلستان توسط «Joseph Aspdin » به ثبت رسید . مردم کشور ما نیز از سال 1312 با احداث کارخانه سیمان ری با مصرف سیمان آشنا شدند و با پیشرفت صنایع کشور ، امروزه در حدود 26 الی 30 میلیون تن سیمان در سال تولید می گردد . با آگاهی مهندسان از نحوه استفاده سیمان در کارهای عمرانی ، این ماده جایگاه خودش را در کشورمان پیدا کرد

 

یکی از روشهای ساختمان سازی که امروزه در جهان به سرعت توسعه می یابد ساختمانهای بتنی است . بعد از انقلاب اسلامی به علت کمبود تیر آهن در نتیجه تحریمها و نیز گسترش ساخت و سازهای عمرانی در کشور ، کاربرد بتن بسیار رشد نمود . علاوه بر این موضوع ساختمانهای بتنی نسبت به ساختمانهای فولادی دارای مزایایی از قبیل مقاومت بیشتر در مقابل آتش سوزی و عوامل جوی ( خورندگی ) آسان بودن امکان تهیه بتن به علت فراوانی مواد متشکله بتون و عایق بودن در مقابل حرارت و صوت می باشند که توسعه روز افزون این نوع ساختمانها را فراهم می سازد .

 

یکی از معایب مهم ساختمانهای بتنی وزن بسیار زیاد ساختمان می باشد که با میزان تخریب ساختمان در اثر زلزله نسبت مستقیم دارد . اگر بتوانیم تیغه های جدا کننده و پانل ها را از بتن سبک بسازیم وزن ساختمان و در نتیجه آن تخریب ساختمان توسط زلزله مقدار زیادی کاهش می یابد . ولی کم بودن مقاومت بتن سبک عامل مهمی در محدود نمودن دامنه کاربرد این نوع بتن و بهره گیری از امتیازات آن بوده است . استفاده از میکروسیلیس در ساخت بتن سبک سبب شده است که مقاومت بتن سبک بالا رود و این محدودیت کاهش یابد . در این تحقیق ضمن توضیحاتی در مورد بتن و تاثیر آب بر روی مقاومت بتن ، بیشتر در باره بتن سبک و روشهای افزایش مقاومت آن با استفاده از میکروسیلس ،خواص مکانیکی و همچنین موارد کاربرد آن بحث می شود.

 

 

اجزاء تشکیل دهنده بتن و خواص آنها

سیمان : حدود 7 الی 15 درصد از حجم بتن را تشکیل می دهد
آب : حدود 14 الی 21 درصد از حجم بتن را تشکیل می دهد
دانه های سنگی ( شن و ماسه ) : حدود 60 الی 75 درصد از حجم بتن را تشکیل می دهد
هوا: در بتن بدون هوا میزان حجم هوای موجود بین 5/0 تا 30 درصد است و در بتن هوادار میزان حجم هوای موجود بین 4 الی 8 درصد است
مواد مضاف : مواد شیمیایی هستند که به میزان جزئی و به صورت درصدی از وزن سیمان به مخلوط اضافه می شوند تا خواص مطلوب مورد نظر را دربتن ایجاد کنند
 

سیمان

به هر ماده چسبنده ای سیمان اطلاق می شود .لکن به ماده چسباننده مصالح سنگی در بتن اصطلاحا سیمان می گویند که نقش آن صرفا چسباندن دانه ها به یکدیگر بوده و به تنهایی تاثیری در مقاومت و باربری ندارد

 

 

مواد اولیه سیمان :

آهک
Cao
حدود 63 درصد
سیلیس
Sio
حدود 20 درصد
آلومین
Al2o3
حدود 6 درصد
اکسید آهن
Fe2o3
حدود 3 درصد
اکسید منیزیم
Mgo
حدود 5/1 درصد
 

 

 

 

 

مواد شیمیایی موجود در سیمان  :

تری کلسیم سیلیکات : ( 3Cao-Sio2 ) با علامت اختصاری ( C3S )
دی کلسیم سیلیکات : ( 2Cao-Sio2 ) باعلامت اختصاری ( C2S )
تری کلسیم آلومینات : ) 3Cao-Al2o3 ) با علامت اختصاری ( C3A)
تتراکلسیم آلومیوفریت: ( 4Cao-Al2o3-Fe2o3 ) با علامت اختصاری ( C4AF )
 

انواع سیمانهای استاندارد : ( پرلتند )

 

 

1- سیمان تیپ یک ( I ) ، سیمان معمولی

ارزیابی میزان آسیب دیدگی بتن


مرحله‌ی بعد در پروسه‌ی ترمیم بتن، ارزیابی میزان آسیب دیدگی و شدت تخریب است. هدف از این مرحله، فهمیدن میزان آسیب دیدگی بتن و تاثیر آن بر روی سازه می‌باشد. به عبارت دیگر این که چه قسمت‌هایی از سازه تحت تاثیر این آسیب دیدگی خواهد بود. این مرحله شامل پیش‌بینی پیش‌رفت تخریب و تعیین نحوه‌ی آن نیز می‌باشد.

 

شکل آسیب دیدگی بتن توسط چرخه‌ی انجماد آب (انجماد و مایع شدن مکرر)، در معرض سولفات قرار گرفتن و واکنش‌های قلیایی سنگدانه‌ها شبیه هم هستند. تخریب واکنش قلیایی سنگدانه‌ها و سولفات‌ها بسیار بیشتر از چرخه‌ی انجماد به بتن خسارت می‌زند؛ اگر چه هر سه دلیل بالا می‌تواند باعث گسیختگی بتن و از دست رفتن ویژگی‌های اصلی سازه شود. تفاوت میان انواع مختلف تخریب این است که انجماد و مایع شدن، بیشتر در قسمت‌هایی ازبتن رخ می‌دهد که بیش از 90 درصد از آن اشباع شده باشد، بنابراین بیشتر در سطوح خارجی بتن رخ می‌دهد. از طرف دیگر واکنش قلیایی سنگدانه‌ها و سولفات‌ها، هم در داخل و هم در خارج بتن می‌تواند رخ دهد؛ یعنی تمامی نواحی بتنرا می‌تواند تحت تاثیر قرار دهد.

 

یکی از راه‌های آسان و معمول برای تخمین میزان آسیب دیدگی بتن، ضربه زدن با چکش به بتن آسیب دیده و بتنسالم و گوش دادن به صدای آن است. (تصویر پایین) اگر این کار توسط افراد مجرب انجام شود، با همین تکنیک ساده هم می‌توان در بیشتر موارد به میزان آسیب دیدگی بتن پی برد. با کوبیده شدن چکش بر روی بتن، بتنی که سالم باشد صدایی متمایز می‌دهد و نیروی وارده به آن نیز به صورت کامل به چکش بازمی‌گردد. در صورتی که در بتن آسیب دیده، صدای پوکی به گوش می‌رسد و نیرو به صورت کامل به چکش برگردانده نمی‌شود.

 

چندین آزمایش غیر مخرب (NDT) برای تعیین میزان آسیب دیدگی بتن وجود دارد که آزمایش اشمیت (آزمایشی که در پاراگراف قبلی بیان شد) احتمالاً ارزان‌ترین و آسان‌ترینِ آن‌هاست. آزمایش اشمیت اطلاعاتی سودمند به ما می‌دهد که کمک می‌کند قسمت‌های مختلف یک بتن در سازه را با هم مقایسه کنیم. با این حال، در مورد بتن‌های قدیمی‌تر، خیلی نباید بر روی این آزمایش حساب کرد. این آزمایش بیشتر روی بتن‌های جدید جواب می‌دهد؛ بتن‌هایی که تحت تاثیر هوازدگی نبوده‌اند.

 

دستگاه‌های سرعت‌سنج اولتراسونیک و آکوستیک پالس اکو، زمان رفت و یا رفت و برگشت موج صوت را اندازه‌گیری می‌کنند. بتن بی‌کیفیت یا آسیب دیده به وسیله‌ی این اطلاعات مشخص می‌شود. دستگاه آکوستیک می‌تواند امواج تولید شده توسط مواد هنگامی تحت تنش یا کرنش بیش از حد قرار گرفته‌اند را تشخیص دهد. به عبارت دیگر این دستگاه می‌تواند صدای ترک‌های کوچک به وجود آمده در بتن بر اثر تنش را بشنود. یکی از مزایای استفاده از این تکنولوژی، افزایش سرعت عمل است.

 

با این حال، این آزمایش به تنهایی کافی نیست و لازم است اطلاعات جمع‌آوری شده از بتن در آزمایش‌های مختلف با هم ترکیب شوند تا بتوان به نتیجه‌ی دلخواه رسید.

قسمت‌هایی از بتن که آسیب‌دیده تشخیص داده شدند، باید علامت‌گذاری شوند تا آماده‌سازی برای ترمیم آن‌ها به نحو احسن صورت گیرد.


تشخیص علت یا علل آسیب دیدن بتن

تولید سیمان که ماده اصلی چسبندگی در بتن است در سال 1756 میلادی در کشور انگلستان توسط «John smeaton »که مسئولیت ساخت پایه برج دریایی «Eddystone » را بر عهده داشت آغاز شد و درنهایت سیمان پرتلند در سال 1824 میلادی در جزیره ای به همین نام در انگلستان توسط «Joseph Aspdin » به ثبت رسید . مردم کشور ما نیز از سال 1312 با احداث کارخانه سیمان ری با مصرف سیمان آشنا شدند و با پیشرفت صنایع کشور ، امروزه در حدود 26 الی 30 میلیون تن سیمان در سال تولید می گردد . با آگاهی مهندسان از نحوه استفاده سیمان در کارهای عمرانی ، این ماده جایگاه خودش را در کشورمان پیدا کرد

 

یکی از روشهای ساختمان سازی که امروزه در جهان به سرعت توسعه می یابد ساختمانهای بتنی است . بعد از انقلاب اسلامی به علت کمبود تیر آهن در نتیجه تحریمها و نیز گسترش ساخت و سازهای عمرانی در کشور ، کاربرد بتن بسیار رشد نمود . علاوه بر این موضوع ساختمانهای بتنی نسبت به ساختمانهای فولادی دارای مزایایی از قبیل مقاومت بیشتر در مقابل آتش سوزی و عوامل جوی ( خورندگی ) آسان بودن امکان تهیه بتن به علت فراوانی مواد متشکله بتون و عایق بودن در مقابل حرارت و صوت می باشند که توسعه روز افزون این نوع ساختمانها را فراهم می سازد .

 

یکی از معایب مهم ساختمانهای بتنی وزن بسیار زیاد ساختمان می باشد که با میزان تخریب ساختمان در اثر زلزله نسبت مستقیم دارد . اگر بتوانیم تیغه های جدا کننده و پانل ها را از بتن سبک بسازیم وزن ساختمان و در نتیجه آن تخریب ساختمان توسط زلزله مقدار زیادی کاهش می یابد . ولی کم بودن مقاومت بتن سبک عامل مهمی در محدود نمودن دامنه کاربرد این نوع بتن و بهره گیری از امتیازات آن بوده است . استفاده از میکروسیلیس در ساخت بتن سبک سبب شده است که مقاومت بتن سبک بالا رود و این محدودیت کاهش یابد . در این تحقیق ضمن توضیحاتی در مورد بتن و تاثیر آب بر روی مقاومت بتن ، بیشتر در باره بتن سبک و روشهای افزایش مقاومت آن با استفاده از میکروسیلس ،خواص مکانیکی و همچنین موارد کاربرد آن بحث می شود.

 

 

اجزاء تشکیل دهنده بتن و خواص آنها

سیمان : حدود 7 الی 15 درصد از حجم بتن را تشکیل می دهد
آب : حدود 14 الی 21 درصد از حجم بتن را تشکیل می دهد
دانه های سنگی ( شن و ماسه ) : حدود 60 الی 75 درصد از حجم بتن را تشکیل می دهد
هوا: در بتن بدون هوا میزان حجم هوای موجود بین 5/0 تا 30 درصد است و در بتن هوادار میزان حجم هوای موجود بین 4 الی 8 درصد است
مواد مضاف : مواد شیمیایی هستند که به میزان جزئی و به صورت درصدی از وزن سیمان به مخلوط اضافه می شوند تا خواص مطلوب مورد نظر را دربتن ایجاد کنند
 

سیمان

به هر ماده چسبنده ای سیمان اطلاق می شود .لکن به ماده چسباننده مصالح سنگی در بتن اصطلاحا سیمان می گویند که نقش آن صرفا چسباندن دانه ها به یکدیگر بوده و به تنهایی تاثیری در مقاومت و باربری ندارد

 

 

مواد اولیه سیمان :

آهک
Cao
حدود 63 درصد
سیلیس
Sio
حدود 20 درصد
آلومین
Al2o3
حدود 6 درصد
اکسید آهن
Fe2o3
حدود 3 درصد
اکسید منیزیم
Mgo
حدود 5/1 درصد
 

 

 

 

 

مواد شیمیایی موجود در سیمان  :

تری کلسیم سیلیکات : ( 3Cao-Sio2 ) با علامت اختصاری ( C3S )
دی کلسیم سیلیکات : ( 2Cao-Sio2 ) باعلامت اختصاری ( C2S )
تری کلسیم آلومینات : ) 3Cao-Al2o3 ) با علامت اختصاری ( C3A)
تتراکلسیم آلومیوفریت: ( 4Cao-Al2o3-Fe2o3 ) با علامت اختصاری ( C4AF )
 

انواع سیمانهای استاندارد : ( پرلتند )

 

 

1- سیمان تیپ یک ( I ) ، سیمان معمولی