کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

بررسی امکان استفاده از پسماندهای ساختمانی بازیافت شده در ساخت ، اجرا و نگهداری بتن


مقدمه:

تحقیقات انجام شده در جهان نشان می دهد که حجم نخاله¬های ساختمانی در میان سایر زباله¬ها 13 تا 29 درصد می باشد[2]. در سال 1996 تخمین زده شد که 136 میلیون تن ضایعات ساختمانی حاصل از تخریب و نوسازی مربوط به ساختمان سازی در ایالات متحده تولید شده،که از این مقدار 43 درصد در منابع مسکونی و 57 درصد حاصل از منابع غیر مسکونی است. علاوه براین، ضایعات ساختمانی 48 درصد از کل، که شامل 44 درصد حاصل بازسازی و 9 درصد حاصل ساخت و ساز جدید است . متاسفانه تخمین های مشابهی برای نخاله های ساختمانی حاصل از ساخت و ساز مراکز غیر مسکونی و تجاری و تخریب فیزیکی مراکز از جمله سازه¬های بتنی ، پل های فولادی ، بستر سازی جاده و پاکسازی محل قابل دسترسی نیستند. بر اساس بررسی منابع چندگانه این طور تخمین زده می¬شود که نخاله¬های ساختمانی غیربنایی 2 پوند / هر نفرروز است. با استفاده از یک جمعیت 280 میلیونی، مقدار معادل نخاله¬های ساختمانی، غیربنایی در ایالت متحده حدود 100 میلیون تن در سال است. [1] حجم ضایعات ساختمانی کشور آمریکا برای تعمیرات و بازسازی راه¬ها حدود 91 میلیون تن و بتن قابل بازیافت در سال¬های 1992 تا 1997، 26 تا 100 میلیون تن است . همچنین در ایالت کالیفرنیای امریکا حدود 12 درصد از حجم محل¬های دفن را نخاله¬ها تشکیل می¬دهند که حدود 25 درصد از حجم کل آن¬ها می¬باشد. میانگین وزن ضایعات ساختمانی در این ایالت بیش از 4 میلیون تن در سال است.[2]

آمار ثبت شده در خصوص میزان خاک و نخاله ساختمانی دفع شده در تهران نشان می¬دهد، از سال 1368 تا سال 1377 ، مجموعاً 61275196 تن معادل 116928033 مترمکعب آوار ساختمانی توسط 8847829 سرویس خودرو به محل تعیین شده از طرف شهرداری دفع شده است. آمارتولید نخاله¬های دفع شده در سال 1380، در گودال¬های اطراف تهران حدود 11973947 تن بوده است که بیش¬ترین مقدار به ترتیب، در گودهای کهریزک و آبعلی دفع شده است. [9] با توجه به اطلاعات موجود در سال 1385 ، سهم پروانه¬های صادره برای تخریب و نوسازی نشان دهنده این است که عملاً بین 5 تا 8/25 درصد بوده. در حالی که برای شهر تهران از کل پروانه¬های صادره برای تخریب حدود 90 تا 94 درصد برای تجدید بنا پس از تخریب است که می¬تواند حجم عملیات تخریب را نشان بدهد. [10]

با توجه به حجم بالای تولیدپسماندهای ساختمانی در بخش¬های مسکونی و غیر مسکونی از یک سو و از طرف دیگر حجم بالای مصرف بتن به عنوان پر مصرف¬ترین محصول ساختمانی در حالی که هر روز ابعاد و تعداد پروژه¬های عمرانی به خصوص در کشورهای در حال توسعه در حال گسترش می¬باشد، بدیهی است که انجام فرآیند بازیافت این پسماند تا چه حد می تواند در حفظ منابع موجود که بعضاً غیر قابل تجدید می¬باشند و نیز حفظ محیط زیست از ورود این حجم پسماند¬های ساختمانی ، لازم و ضروری باشد. در این مقاله سعی می¬گردد تا پتانسیل ها ، مشکلات ، راهکارها و مزایای این امر در راستای تحقق دستیابی به آن ارزیابی گردد.

تعریف پسماندهای ساختمانی:

فعالیت¬های ساختمانی شامل مجموعه فعالیت¬ها و مراحل ایجاد ساختمان و ابنیه¬های مختلف در بخش¬های آب، صنعت اسکله¬ها، راه¬ها، محوطه¬ها و ... ، تغییرات اساسی برای افزایش کارایی و عمر بنا ، تجدید بنا و تغییرات جزئی می¬شود .پسماند ساخت و تخریب، از ساخت، نوسازی و تخریب ساختمان¬ها، ابنیه صنعتی، سازه¬های آبی چون مخازن و سدها، کارخانه ها، نیروگاه¬ها، تاسیسات اتمی، اسکله¬ها، رویه راه¬ها، جداول و قطعات پیش¬ساخته، پل¬ها و ... ، و پاک¬سازی آوارهای ناشی از بلایای طبیعی و انسانی حاصل می¬شوند. [1]

اگر چه ضایعات ساختمانی جزو کم خطرترین انواع پسماند یعنی پسماندهای عادی طبقه بندی می¬شوند، ولی از اوایل دهه 90 بر اساس مطالعاتی که صورت گرفته، مشخص شده است که مواد زائد خطرناک مانند چسب، رنگ و رزین¬ها، هر چند ناچیز، همراه نخاله¬ها ممکن است خطراتی را برای محیط زیست و انسان ایجاد نماید.[3] حجم پسماندهای ساختمانی به عواملی چون میزان رشد جمعیت و نیاز روزافزون به محل سکونت و تاسیسات و تجهیزات زیربنایی، نرخ مهاجرت روستاییان به شهرها و توسعه ناخواسته مراکز جمعیتی، بافت و قدمت ساختمان¬های موجود و میزان مقاومت آن¬ها در برابر زلزله، بلایای طبیعی، معماری ساختمان¬های موجود و تقاضای نسل حاضر و ... بستگی دارد.[2]

انواع پسماند¬های ساختمانی:

پسماند ساخت و تخریب ابنیه و سازه¬ها شامل بتن، آسفالت، چوب، فلزات، شیشه، گچ، آجر، انواع سنگ، مواد پلیمری، موزائیک، سرامیک، کاشی و مواد لازم برای بام سازی هستند.

معمولا اجرای این نخاله¬ها را حدوداً 40 تا 50 در صد بتن، آسفالت، آجر، بلوک، سنگ و خاک، 20 تا 30 درصد چوب و محصولات مربوطه و 20 تا 30 درصد پسماند های متفرقه¬ای همچون فلزات، گچ، شیشه، آزبست و سایر مواد عایق و پلیمری و اجرای تاسیسات آب و فاضلاب و برق تشکلیل می¬دهد.]1[ در کشور استرالیا عمده نخاله¬های ساختمانی بر حسب تن در سال شامل 726000 بتن،795000 آسفالت، 471000 آجر، 300000 مصالح بنایی، 41000 خاک، 176000 سنگ، 35000 ضایعات چوب و ... می¬باشد. در صد ترکیب مواد تشکیل دهنده آوراهای ساختمانی کشور ایرلند در سال 1996 شامل 45 درصد خاک و سنگ، بتون، آجر، کاشی، سرامیک 31 درصد، فلزات 6 درصد، آسفالت و قیر 1 درصد، چوب 7 درصد و سایر موارد 10 درصد می¬باشد. در آلبرتا کانادا در سال 1997 آوار ساختمانی شامل 35 درصد چوب، 24 درصد سرامیک، 17 درصد مصالح بنایی، 8 درصد کاغذ، 7 درصد فلزات آهنی، 3 درصد شیشه، 2 درصد پلاستیک و 16 درصد سایر مواد بوده است. درصد تفکیک میانیگن آوار ساختمانی در آمریکا شامل 27 درصد چوب، 23 درصد آسفالت، بتن و آجر، 13 درصد تخته گچی، 12 درصد مصالح بام سازی، 9 درصد فلزات، 3 درصد کاغذ و 1 درصد پلاستیک می باشد. [10]

بازیافت نخاله ساختمانی در سایر کشورها:

در حال حاضر در بسیاری از کشورهای پیشرفته به دلیل مسائل زیست محیطی مانند کمبود منابع، کمبود محل دفن و آلودگی محیط زیست بازیافت نخاله¬های ساختمانی مورد توجه ویژه¬ای می¬باشد و این امر از سوی کلیه دست¬اندرکاران دنبال می¬گردد. در کشور ایرلند در حدود 82 درصد از نخاله¬های ساختمانی بازیافت می¬گردد. در دولت محلی انتاریودرکشور کانادا این عدد 12 درصد ، در ژاپن این عدد 98 درصد و در ایالات مختلف آمریکا متغیر است. در بسیاری از کشورها نیز فعالیت¬های زیادی در کاهش تولید نخاله و نیز استفاده مجدد از آن¬ها صورت گرفته است. [10]

مقدار مصالح بازیافتی در استرالیا[10]

مصالح بازیافت شده مقدار ( تن در سال )
بتن 726000

آسفالت 795000

آجر 471000

مصالح بنایی 300000

خاک 41000

سنگ 176000

ضایعات چوب 35000

مقدار مصالح تولیدی و بازیافتی در ایرلند[10]

سال زباله تولیدی (بدون زباله کشاورزی) مدیریت دفع آوار درصد آوار بازیافت شده

1995 11.2 میلیون تن 1.3 میلیون تن 35%

1998 15.4 میلیون تن 2.7 میلیون تن 43.30%

انواع بازیافت مواد پسماندهای ساختمانی :

پسماندهای ساختمانی شامل چهار بخش پسماندهای ناشی از ساخت، پسماندهای ناشی از تخریب ساختمان¬ها، پسماندهای ناشی از تعمیر و پسماندهای ناشی از بلایایی مانند زلزله ، انفجار و ... می¬باشد [10] . این چهار پسماند از منظر ماهیت و ساختار همانند هم بوده لذا اختلاف آن¬ها در تنوع و حجم پسماند و نحوه¬ی جداسازی آن¬ها می¬باشد. بدیهی است که مصالح ناشی از تخریب دارای حجم و تنوع بیشتر پسماند می¬باشد. بازیافت پسماند مصالح ساختمانی به دو صورت انجام می گیرد:

• بازیافت موادی که بدون هیچ گونه تغییر ماهیتی به چرخه باز مصرف برمی¬گردند مانند فولاد و...

• بازیافت موادی که پس از طی فرایندی به مواد جدید تبدیل می¬شوند. مانند شیشه، مواد پلیمری و پلاستیک و...[1]

مزایای استفاده از بازیافت نخاله¬های ساختمانی در ساخت بتن:

• حفظ منابع محیط زیست که در بسیاری از صنایع تجدید ناپذیر و یا در بازه¬های زمانی بسیار بلند تجدید می¬گردد: امروزه بتن پر مصرف¬ترین مصالح ساختمانی به¬شمار می¬آید. بدیهی است که این امر خود نشان دهنده حجم بالای استفاده از منابع مختلف مانند آهن، سیمان، سنگ دانه¬ها و آب به صورت مستقیم برای تولید بتن باشد. برخی از محصولات جانبی مانند مواد محافظتی و کیورینگ بتن و اسپیسرها نیز به صورت غیر مستقیم با افزایش دوام سازه¬ها باعث حفظ این منابع می¬گردند.

• کاهش پسماندهای نهایی و آلودگی محیط زیست: با توجه به حجم بالای پسماندهای ساختمانی استفاده بخشی از آن¬ها نیز در ساخت این پرمصرف¬ترین مصالح ساختمانی باعث کاهش بخشی از پسماندهای تولیدی و مشکلات ناشی از عدم بازیافت آن¬ها می¬گردد.

• ایجاد اشتغال: با توجه به نیازهای تخصیص منابع انسانی در مراحل مختلف چون تحقیقات، جداسازی و حمل پسماندها، کارخانه تبدیل مواد رونق این امر می تواند ایجاد کننده فرصت¬های شغلی باشد.

• منافع اقتصادی: با آزاد سازی قیمت¬ها، حذف یارانه¬های دولتی و در حال حاضر تحریم¬های موجود بر اقتصاد ایران و به تبع آن افزایش هزینه¬های تولید و حمل، بازیافت انواع پسماندها به خصوص بازیافت مصالح گران قیمت ساختمانی مانند سیمان، سنگ دانه ها، آرماتور، مواد شیمیایی، لوازم قالب بندی و ... می تواند ایجاد کننده منافع اقتصادی مناسبی چه از نظر حفظ منابع طبیعی و ایجاد امکان صادرات و چه از منظر بازیافت پسماندها برای سرمایه¬گذاران باشد.

مسائل، پیش نیاز¬ها و راهکارهای مورد نیاز جهت بازیافت مصالح ساختمانی قابل مصرف در بتن:

• تحقیقات و پژوهش جهت دستیابی به راهکاری علمی و عملیاتی برای بازیافت پسماندها و چگونگی تبدیل به مصالح جدید و غیرجدید پیشنهادی در صنایع مرتبط، دانشگاه-ها و مراکز پارک¬های فن¬آوری و ...: لازم به ذکر است که این امر بیشتر در توسعه محصولات بازیافتی در تبدیل به محصولات جدید، دارای اهمیت می باشد. این امر در حال حاضر در بسیاری از کشورهای پیشرفته مانند آلمان، استرلیا، آمریکا، کانادا و ... با توجه به محدودیت شدید منابع و محل دفن در حال انجام و اجرا می باشد. [10]

• آموزش دست¬اندرکاران: هم اکنون در بسیاری از کشورهای توسعه یافته دوره¬هایی برای دست¬اندرکاران عرصه ساخت¬ و ساز از سوی سازمان¬های مربوطه برگزار می¬گردد. این دوره¬ها بر مبنای استفاده از مصالح با قابلیت بازیافت بیشتر، چگونگی بازیافت و مراحلی که بر عهده ایشان می باشد مانند جداسازی و ... و نیز استفاده از انواع مواد بازیافتی، در بخش¬های طراحی، ساخت و تخریب می¬باشد. [10] این امر می¬تواند تا حدود زیادی مشکلات مربوط به عملی شدن این فرآیند را تسهیل نماید.

• تدوین استانداردهای کنترل کیفی و اجرایی بازیافت پسماندها و تبدیل به مصالح کاربردی ساختمانی و بتن: هم اکنون در بسیاری از کشورهای جهان استانداردها و دستورالعمل-هایی جهت بازیافت نخاله¬های ساختمانی تدوین و در اختیار دست¬اندرکاران مربوطه قرار گرفته است. [10]

• طراحی و ایجاد سیستم¬های جمع¬آوری، جداسازی و حمل پسماندهای ساختمانی با بکارگیری و مشارکت صنایع خصوصی و شهرداری¬ها و کارخانجات تولید مصالح مرتبط: در حال حاضر تعدادی از این تجهیزات مانند تجهیزات و خط بازیافت مصالح سنگی ناشی از تخریب بتن و ... طراحی و در بسیاری از کشورهای پیشرفته مورد استفاده قرار می¬گیرد. لذا شایسته است با تحقیقات و سرمایه¬گذاری محققین داخلی بازیافت سایر متریال و پسماندهای ساختمانی نیز تحقق یابد. البته این امر در حال حاضر به صورت بسیار محدود آن هم صرفاً در خصوص بازیافت مصالح سنگی در برخی محل¬های دفن مانند ایستگاه آبعلی تهران در حال انجام می¬باشد که نیازمند گسترش از نظر حجم، وسعت و تنوع می¬باشد. [9]

• تامین منابع مالی اولیه در بخش¬های تحقیقات و بازیافت توسط منابع دولتی و یا شهرداری¬ها: با توجه به منافع اقتصادی بلند مدت و زیست محیطی و نیز بهره¬گیری از سرمایه-گذاری بخش خصوصی کارخانجات نهایی محصولات ساختمانی و یا سرمایه گذاران جدید، با توجه به منافع اقتصادی، قوانین مورد نیاز ایجاد گردد. در حال حاضر در بسیاری از کشورهای دنیا قوانینی وضع گردیده و اجرا می¬شود که بخش زیادی از هزینه¬ها بر عهده تولیدکننده¬های نخاله¬های ساختمانی می¬باشد. [10]

مصالح قابل بازیافت نخاله ساختمانی برای ساخت بتن :

بدیهی است اگر صرفاً در مبحث بازیافت به استفاده از بتن تخریبی آن محدوده با هزینه دو برابر و نیمی نسبت به استفاده از سنگ دانه دست اول جامه¬ی عمل پوشیده شود، به هیچ وجه اقتصادی نمی¬باشد لذا لازمه موفقیت این امر، دیدگاه ارزش¬های محیط زیستی و استفاده و انجام بازیافت حداکثری همه بخش¬ها و انواع نخاله ساختمانی می¬باشد [9].

• انواع مصالح پلیمری و لاستیکی: درب و پنجره¬های UPVC ، لوله¬های پلیکا، انواع کف پوش، دیوار پوش و سقف های کاذب پلیمر، انواع بسته بندی¬های پلیمری مواد و سایر محصولات.

• انواع بتن¬های تخریبی: انواع بتن¬های مصرفی در فونداسیون¬ها، دال¬ها، ستون، دیوارهای برشی، تیرها، محوطه سازی¬ها، کف سازی¬ها، انواع سازه¬ها، مخازن، نیروگاه¬ها، پل¬ها، کارخانه¬ها و ...

• انواع سنگ: سنگهای مصرفی در کف سازی و نما سازی و ...

• کاشی و سرامیک: کاشی و سرامیک¬های اجرا شده در سرویس¬های بهداشتی، حمام، آشپزخانه و کف سازی سالن و اتاق¬ها.

• انواع آجرهای سفالی: دیوارهای سنتی و پارتیشن، بلوک¬های سقفی بلوکی و ...

• مصالح گچی: نازک کاری¬ها و پارتیشن¬ها.

• انواع آهن آلات: درب و پنجره¬ها، نعل درگاه¬ها، اسکلت¬ها، میلگردها، شیرآلات، نرده¬ها و ...

• انواع مصالح پایه نفتی: انواع پوشش¬های آب بند مانند آسفالت ، قیرگونی و ایزوگام.

• شیشه: انواع شیشه¬های درب و پنجره و ...

• آسفالت: آسفالت موجود در جاده¬ها ، محوطه سازی¬ها و پشت بام¬ها.

پتانسیل¬های استفاده از مصالح بازیافتی در بتن:

• آرماتور: این محصول قابل بازیافت از کلیه آهن آلات استخراجی از نخاله¬های ساختمانی در کارخانه¬های ذوب و نورد می¬باشد. این بازیافت به صورت مستقیم و بدون تغییر در نوع محصول بازیافتی حاصل از پسماند می¬باشد.

• شیشه: امروزه براساس تحقیقات و آزمایش¬های انجام شده به اثبات رسیده است که افزودن پودر شیشه¬های بازیافتی در هنگام استفاده جایگزین سیمان و یا سنگ دانه در بتن¬های جدید ضمن حفظ مقاومت فشاری، باعث ارتقا مقاومت الکتریکی و کاهش نفوذ پذیری آن می¬گردد. همچنین استفاده از پودر شیشه در سنگ¬های مصنوعی بتنی تولیدی می¬تواند باعث افزایش کیفیت سایشی و زیبایی آن گردد.[4]

مشخصات مقاومت الکتریکی و مقاومت فشاری بتن حاوی پسمانده های شیشه [4]

مقاومت فشاری 28 روزه ( Kg/cm2) مقاومت فشاری 7 روزه (Kg/cm2) مقاومت الکتریکی بتن 28 روزه مقاومت الکتریکی بتن 7 روزه شماره نمونه

288.4 166.2 7.7 5.3 نمونه 1

282.4 172 7.7 6 نمونه 2

320.5 154 7.6 5.6 نمونه 3

280.5 182.8 10 8.6 نمونه 4-نصف شیشه

291.3 193.6 11 9 نمونه 5-نصف شیشه

292 190.2 11.1 8.7 نمونه 6-نصف شیشه

224.1 185 10 8.1 نمونه 7-تمام شیشه

241 204.7 9.6 8.1 نمونه 8-تمام شیشه

230.5 139 9.5 8 نمونه 9-تمام شیشه

• استفاده از مصالح لاستیکی و پلاستیکی بازیافتی به عنوان افزودنی در بتن: با توجه به تحقیقات انجام شده توسط برخی از کارشناسان داخلی و خارجی به اثبات رسیده است که استفاده از لاستیک می¬تواند باعث ارتقا برخی از خواص در بتن¬های جدید گردد، مانند افزایش الاستسیته، مقاومت کششی، مقاومت ضربه ای و...[7-8]

• استفاده از کاشی بازیافتی در بتن: در حال حاضر در بعضی از کشورها تحقیقاتی برای استفاده از کاشی و سرامیک بازیافتی در کف¬پوش¬های تزیئی انجام گردیده که در برخی از کشورها از جمله کشور دانمارک بعضی از کارخانجات تولید این کف پوش¬ها، در حال فعالیت می¬باشند. [9]

• استفاده از پودر آجر در بتن: براساس تحقیقات انجام شده توسط محققان به اثبات رسیده است که افزودن پودر آجر به جای سیمان در بتن باعث حد قابل قبولی کاهش مقاومت فشاری و یا سایشی گردیده و می¬تواند در بتن¬های با مقاومت معمولی و بتن¬هایی که نیاز به مقاومت سایشی بالا ندارند، مورد استفاده قرار گیرد.[ 5]

• انواع فاصله نگهدارهای پلاستیکی آرماتور: اسپیسرهای پلاستیکی یا فضاسازهای آرماتورها قابل بازیافت از انواع مواد پلیمری موجود در نخاله¬های ساختمانی مانند محصولات پلاستیکی و پی وی سی می¬باشد.

• واتراستاپ: استفاده از پلیمرهای بازیافتی از نخاله¬ها برای ساخت نوارهای واتراستاپ جهت آب بندی درزهای اجرایی و انبساطی بتن.

• الیاف بتن: انواع الیاف¬ها که در دو نوع پلیمری و فلزی مورد استفاده در بتن می¬باشند قابلیت تولید از بازیافت انواع مواد پلیمری و آهن آلات موجود در نخاله را دارند. این الیاف با ایجاد خواصی چون کاهش ترک¬های حرارتی و اجرایی در بتن و افزایش مقاومت کششی، خمشی و فشاری بتن می¬گردد.

• سنگ دانه: امروزه با توجه به تحقیقات و پژوهش¬های انجام شده اثبات گردیده که بازیافت مصالح سنگی بتن در بسیاری از مواقع با شناخت خواص و پتانسیل آن قابلیت استفاده در بتن جدید را دارد. در صورتی¬که از بتن خرد شده صرفاً به عنوان درشت دانه استفاده شود تاثیر چندانی بر مقاومت نداشته (بسته به میزان جایگزینی سنگدانه¬ها باعث کاهش مقاومت از 10 درصد تا حداکثر 40 برای جایگزینی 80 درصدی مصالح سنگی درشت دانه می¬شود ) و سایر مشخصات بتن نیز دست خوش تغییر عمده نخواهد شد. لذا در صورتی که جایگزین بخش ریز دانه گردد، برخی از خواص مانند مقاومت فشاری، کششی، مدول الاستسیته و جمع¬شدگی بسته به میزان جایگزینی می¬تواند باعث ارتقاء حداکثر تا 15 درصد گردد [9]. همچنین جایگزینی مصالح سنگی بازیافتی از بتن تخریبی باعث کاهش وزن مخصوص بتن تا در حدود 2100 کیلیوگرم می گردد. [6] مصرف مصالح بازیافتی به عنوان سنگ دانه¬های بتن در سه طیف قابل استفاده است .

1. بتن¬های سازه¬ای با استفاده از بازیافت بتن¬های تخریبی و سنگ¬های ساختمانی

2. بتن¬های پر کننده با استفاده از نخاله¬های ساختمانی ناشی از بازیافت بخش¬های غیر بتنی و با مقاومت کمتر مانند دیوارهای سفالی، گچ ها، بلوک¬ها و ...

3. بتن¬های مصرفی جهت تولید بتن¬های سبک با استفاده از مواد بازیافتی از مصالح سبک بازیافتی مانند یونولیت ها، دیوارهای آجری و گچی، مصالح چوبی و .... [9]

طرح اختلاط بتن با مصالح بازیافتی [9]
ریزدانه (5-0 م. م ) درشت دانه (20-5 م.م ) نسبت آب به سیمان آب سیمان مشخصه مخلوط

در صد جایگزینی آواری طبیعی درصد جایگزینی آورای طبیعی

(Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 )

0 0 840 0 0 948 0.53 185 350 S0G0

20 168 672 0 0 948 0.53 185 350 S2G0

40 336 504 0 0 948 0.53 185 350 S4G0

60 504 336 0 0 948 0.53 185 350 S6G0

80 672 168 0 0 948 0.53 185 350 S8G0

100 840 0 0 0 948 0.53 185 350 S10G0

0 0 840 20 19 758 0.53 185 350 S0G2

0 0 840 40 380 569 0.53 185 350 S0G4

0 0 840 60 570 379 0.53 185 350 S0G6

0 0 840 80 760 190 0.53 185 350 S0G8

0 0 840 100 950 0 0.53 185 350 S0G10

مشخصات بتن تازه تولیدی با مصالح بازیافتی [9]

مثاومت فشاری ( Mpa ) نسبت آب به سیمان سیمان مشخصه مخلوط

درصد تفییرات 28 روزه 7 روزه

(Kg/m3 )

0 32.7 20.6 0.53 350 S0G0

+6.1 34.7 21.6 0.53 350 S2G0

+8.2 35.3 25.6 0.53 350 S4G0

+9.7 35.8 27.6 0.53 350 S6G0

+14.8 37.5 30.1 0.53 350 S8G0

+14.3 37.3 29.3 0.53 350 S10G0

-9.2 29.7 16.8 0.53 350 S0G2

-25.2 24.3 15 0.53 350 S0G4

-30.6 22.7 14.6 0.53 350 S0G6

-31.1 22.5 13.7 0.53 350 S0G8

-39.8 19.7 12.5 0.53 350 S0G10

مشخصات بتن سخت شده تولیدی با مصالح بازیافتی [9]

دمای بتن وزن مخصوص بتن تازه اسلامپ نسبت آب به سیمان سیمان مشخصه مخلوط

درجه سانتیگراد ( Kg/m3 ) ( Cm )

(Kg/m3 )

30 2324 15 0.53 350 S0G0

29 2315 8 0.53 350 S2G0

29 2305 6 0.53 350 S4G0

30 2282 2.5 0.53 350 S6G0

30 2236 1 0.53 350 S8G0

29 2207 0 0.53 350 S10G0

30 2323 18 0.53 350 S0G2

30 2288 20 0.53 350 S0G4

30 2257 20 0.53 350 S0G6

29 2228 21 0.53 350 S0G8

29 2230 22 0.53 350 S0G10

• مواد چسباننده بتن (جایگزین سیمان): استفاده از مواد پلیمری بازیافتی نخاله¬های ساختمانی به عنوان مواد چسباننده در بتن برای مصارف خاص مانند ملات¬های تعمیراتی، پرکننده و یا حتی مواد جایگزین گروت¬ها مانند بتن¬های پلیمری و ...

• مصالح یا مواد کیورینگ یا حفظ رطوبت بتن: با توجه به اهمیت کیورینگ مناسب در کیفیت و دوام بتن و تنوع روش¬های موجود برای این امر، استفاده از مصالح بازیافتی به صورت ایجاد فیلم¬های حفظ رطوبت از مواد پلیمری و ... مانند ورق¬های پلاستیکی، می تواند در فرآیند بازیافت مصالح پلیمری و قیری مورد توجه قرار گیرد.

• مواد محافظتی و آب بند سطحی بتن: بازیافت مصالح پایه قیری و یا پلیمری، می¬تواند با تبدیل آن¬ها به پوشش محافظتی و کنترل کننده نفوذ پذیری بتن، مورد استفاده قرار گیرد.

• لوزام قالب بندی: با بازیافت انواع آهن آلات و یا پلیمری، می توان از آن¬ها در ساخت لوازم قالب بندی فلزی و یا پلیمری استفاده نمود. این بازیافت نیز به صورت بازیافت بدون تغییر در ماهیت پسماند می باشد.
نتیجه گیری:

با توجه به اهمیت مبحث بازیافت بر محیط زیست، اقتصاد و جایگاه جهانی آن، لازم به نظر می¬رسد تا این امر با وضع قوانین، حمایت¬های دولتی در بخش¬های خصوصی و مراکز علمی مورد توجه قرار گیرد. این امر با توجه به وسعت ابعادی و مالی پروژه¬های عمرانی که تامین منابع مالی آن مستقیماً بر دوش مردم نبوده و توسط سرمایه گذاران خصوصی و دولت تامین می¬گردد می¬تواند در یک برنامه¬ریزی مدون عملیاتی گردیده و باعث ایجاد درآمدهای اقتصادی پس از بهره برداری و نیز مدیریت مناسب پسماندها و حفظ محیط زیست گردد. بدیهی است که اولین گام کاربردی در این امر تشریح پتانسیل¬های کاربردی، ملموس و عملیاتی و تبین دور نماهای آن برای دست اندرکاران مختلف این راه می باشد. بی شک در این برهه انجام کارهای پژوهشی از سوی مراکز علمی چون دانشگاه¬ها و پارک¬های فن آوری و .... برای عینیت بخشی این امر از اهمیت ویژه¬ای برخودار می¬باشد. همچنین لازم است با بررسی و ایجاد مراکز جمع آوری پسماندهای ساختمانی در هر شهر و یا در مراکز استان¬ها و ایجاد سیستم¬های حمل و مکانیزم¬های جداسازی در مبدا ( با توجه به اینکه عمدتاً ایجاد کننده¬های این پسماندها شرکت¬های مجهز و مجریان ساخت و ساز با بنیه مالی مناسب می¬باشند .) و یا در محل جمع¬آوری گامی موثر در این عرصه به سوی عملیاتی کردن مبحث برداشته شود. همچنین تدوین قوانین جهت جداسازی و تحویل توسط تولید کننده نخاله و یا استفاده اجباری از پیمانکاران تخریب تخصصی با دانش و تجهیزات لازم می تواند تا حدود زیادی راهگشا باشد.

منابع و مراجع :

[1] چوبانگلوس، جورج.، کریت، فرانک. (1389)، راهنمای کاربردی مدیریت پسماند، مترجمان: خانی، محمد رضا.، پورعطایی، مهدی.، خسرو محمودخانی، روح الله.، جلد اول و دوم ، انتشارات شهرداری¬ها و دهیاری های کشور.

[2] خیاطی، محمود.، (1385)، مقاومت و دوام بتن تهیه شده از سنگدانه های بازیافتی، پایان نامه کارشناسی ارشد عمران (گرایش خاک و پی) ، دانشگاه فردوسی مشهد.

[3] غفوری،محمد.، و همکاران ،(1384) ، نخاله های ساختمانی ، بازیافت و بهره برداری از آنها جهت دفن بهداشتی زباله های جامد شهری ، سازمان بازیافت و تبدیل مواد مشهد.

[4] عباسی دزفولی، عبدالکریم.، اولی پور، مسعود.، برنا، مسعود.، پور زنگنه، بهرام. (1391)، مدیریت ساخت و توسعه استفاده از خورد شیشه های بازیافتی در بتن، اولین همایش بین المللی بحران های زیست محیطی و راهکارهای آن ، علوم و تحقیقات خوزستان.

[5] بیات، حبیب الله.،شهابی، اکبر.، شاه محمدی، شهریار. (1389)، بررسی تاثیر پودر آجر و شیشه بازیافتی بر مقاومت سایشی بتن زیر آب سدها، دومین کنفرانس ملی بتن ایران.
[6] مستوفی نژاد، داوود.، افتخار، محمدرضا. (1384)، بررسی خواص مکانیکی بتن با مقاومت پایین بازیافتی، دومین کنفرانس بین المللی بتن و توسعه.

[7] مستوفی نژاد، داوود.، نجار، محمد. (1384)، بررسی مقاومت فشاری بتن دانه و پودر لاستیک تایر بازیافتی، دومین کنفرانس بین المللی بتن و توسعه.

[8] حاجتی مدارایی، عطالله.، پوراکابریان، حمید. (1390)، بررسی خواص مهندسی بتن حاوی PET بازیافتی، ششمین کنگره ملی مهندسی عمران.

[9] ماجدی اردکانی، محمدحسین.، رئیس قاسمی، امیرمازیار.، فیروزیار، فهیمه. (1386)، مطالعات مقدماتی بازیافت آوارهای ساختمانی ( ایستگاه آبعلی )، گزارش تحقیقاتی - نشریه شماره 459، مرکز تحقیقات ساختمان و مسکن، چاپ اول.

[10] ماجدی اردکانی، محمدحسین.، مدنی، همایون. (1391)، مروری بر مدیریت آوراهای ساختمانی، گزارش تحقیقاتی - نشریه شماره 623، مرکز تحقیقات ساختمان و مسکن ، چاپ اول.

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


بررسی جذب آب بتن سبکدانه با لیکا

بکارگیری بتن های سبکدانه با لیکا برای مناطق بندری و سواحل کشور بویژه در حاشیه خلیج فارس و دریای عمان نیاز به مطالعه جدی دارد. پارامترهای مختلفی در این رابطه باید مورد توجه قرار گیرد. از جمله می توان به بررسی جذب آب این نوع بتن ها پرداخت. جذب آب حجمی اولیه 10 تا 60 دقیقه ، جذب آب حجمی نهائی 7 روزه ، جذب آب موئینه ، تعیین پارامترهای ثابت بتن ، ضریب جذب آب موئینه در حالت خشک شده در هوا.

- مقدمه

بکارگیری بتن های سبکدانه با لیکابرای مناطق بندری و سواحل کشور بویژه در حاشیه خلیج فارس و دریای عمان نیاز به مطالعه جدی دارد. پارامترهای مختلفی در این رابطه باید مورد توجه قرار گیرد. از جمله می توان به بررسی جذب آب این نوع بتن ها پرداخت. جذب آب حجمی اولیه 10 تا 60 دقیقه ، جذب آب حجمی نهائی 7 روزه ، جذب آب موئینه ، تعیین پارامترهای ثابت بتن ، ضریب جذب آب موئینه در حالت خشک شده در هوا و خشک شده در آون و ارتفاع موئینه برای بتن های سبکدانه سازه ای با لیکای ایران و با نسبت آب به سیمان کم در حالت های میکرو سیلیس دار و بدون میکرو سیلیس بدست آمده و با بتن سبکدانه غیر سازه ای و بتن معمولی مشابه مقایسه می گردد. همچنین ضریب همبستگی تعیین پارامترهای جذب آب موئینه مشخص شده است. برای بتن ها ، جذب آب مفهوم نفوذ پذیری را نشان می دهد و بویژه در مواردی که بتن دائما در معرض آب نمی باشد ، جذب آب موئینه می تواند از اهمیت برخوردار باشد.

2-روش تهیه نمونه ها

2-1- تعداد و نوع نمونه ها

برای بررسی بتن های سبکدانه سازه ای با لیکای از نظر جذب آب ، نمونه های مکعبی 10 سانتیمتری با نسبت های مورد نظر ساخته شد و مورد آزمایش قرار گرفت.

برای تعیین درصد جذب آب حجمی اولیه در زمانهای 10 و 20 و 60 دقیقه و درصد جذب آب حجمی 1 تا 7 روزه در دو حالت خشک شده در آون برای هر نوع مخلوط بتن ، 4 آزمونه مکعبی 10 سانتیمتری تهیه شد که دو آزمونه برای حالت خشک شده در هوا و دو آزمونه برای حالت خشک شده در آون بکار رفت. همچنین برای تعیین جذب آب موئینه و مشخص کردن حجم آب جذب شده در واحد سطح ( i ) در مدت 3 ، 6 ، 24 و 72 ساعت و در کنار آن پارامتر ثابت جذب C و پارامتر S ضریب جذب موئینه بتن با توجه به روند جذب آب موئینه در طول زمان ، 2 آزمونه مکعبی 10 سانتیمتری برای حالت خشک شده در هوا و دو آزمونه برای حالت خشک شده در آون بکار گرفته شد که جمعا 4 آزمونه را تشکیل می دهد.

2-2-شرایط نگهداری نمونه ها

آزمونه های بتنی پس از قالب گیری ، یک روز در قالب در زیر گونی چتائی مرطوب قرار گرفتند و پس از یک روز در تانک آب در دمای °c 22 به مدت 6 روز نگهداری گردید. آزمونه های 7 روزه به دو دسته تقسیم شدند و به مدت 14 روز در محیط آون با دمای °c 50 و محیط آزمایشگاهی با دمای °c20 تا °c 27 و رطوبت نسبی 40 تا 50 درصد قرار داده شدند. پس از این مدت هر دسته از آزمونه ها مورد آزمایش قرار گرفت.

2-3-شرایط آزمایش

نمونه های مربوط به آزمایش جذب حجمی در تانک آب قرار گرفت و در زمانهای 10 ، 20 و 60 دقیقه جذب آب اولیه حجمی ( سطحی ) تعیین گردید. سپس این کار ادامه یافت و در سنین 1 ، 2 ، 3 و 7 روزه و حتی در سنین 4 ، 5 و 6 روزه نمونه ها وزن شد و جذب آب حجمی نهائی تا ثابت شدن وزن نمونه بدست آمد ( طبق BS ) .

نمونه های مربوط به آزمایش جذب آب موئینه به نحوی روی ظرف محتوی آب حاوی لاجورد قرار گرفت که 10 میلیمتر آن همواره در آب بود و بقیه در هوا واقع شد. در سنین 3 ، 6 ، 24 و 72 ساعت نمونه ها توزین گردید ( طبق Rilem Cpc112 ) .

2-4مصالح مصرفی

برای ساخت نمونه ها از سیمان نوع 1 ، میکرو سیلیس تولید داخل ، شن لیکای تولید ایران با حداکثر اندازه 13 میلیمتر و ماسه لیکا با حداکثر اندازه 3 میلیمتر ، شن و ماسه معمولی معروف به خلیج و افزودنی فوق روان کتتده MS 432 استفاده شده است که در جدول مربوطه نوع مصالح مصرفی و مقادیر آنها در یک متر مکعب بتن متراکم تازه ، نسبت آب به سیمان و اسلامپ آنها ملاحظه می شود.

3-نتایج آزمایشها

نتایج آزمایشها در جدول زیر به صورت خلاصه ارائه می گردد.

همچنین نمودارها و منحنی هائی در رابطه با نتایج ارائه می شود.

4- نتیجه گیری

در مورد وجود یا عدم وجود میکروسیلیس نتیجه گیری می شود. میکروسیلیس مقدار جذب حجمی را کاهش می دهد ( هم برای نمونه های خشک شده در آون و هم برای نمونه های خشک شده در هوا )

در مورد نسبت آب به سیمان بتن سبکدانه سازه ای و اثر آن بر جذب آب نتیجه گیری می گردد. افزایش نسبت آب به سیمان موجب افزایش جذب آب حجمی می شود.

مقایسه بین نتایج بتن سبکدانه سازه ای و غیر سازه ای با بتن معمولی انجام می شود و مصرف بتن سبکدانه سازه ای و غیر سازه ای در محیط خورنده توصیه می گردد. ضریب جذب موئینه با وجود میکروسیلیس در بتون های خشک شده در آون و هوا کاهش می یابد و در بتن های سبکدانه ، ضریب جذب موئینه تفاوت چندانی با بتن های معمولی تدارد ؛ اما با افزایش نسبت آب به سیمان افزایش چشمگیری را نشان می دهد.

5-مراجع

[1] Emerson, M., "Mechanisms of Water Absorption by Concrete." , Transport and Road Research Laboratory; U.K; 1990.

[2] Potter, R., Ho, D., "Quality of Cover Concrete and Its Influence on Durability"; SP 100-25; International Conference on Concrete Durability, Vol.1; American Concrete Institute.

[3] McCarter, W.J., Emerson, M., and Ezirim. H; "Properties of Concrete in the Cover Zone: Developments in Monitoring Techniques", Magazine of Concrete Research, Vol.47; No. 172, Sept.1995; pp.243-251.

[4] RILEM Technical Recommendation for the Testing and Use of Construction Materials; CP 11.2; TC14-CPC; "Absorption of water by Concrete by Capillarity"; E & FN Spon; Chapman and Hall, 1994.

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


بررسی نفوذپذیری بتن در برابر گاز اکسیژن به عنوان یکی از شاخصه های پایایی بتن


ضریب نفوذ پذیرى بتن مشخصه‏اى از بتن است که بوسیله آن مى‏توان اطلاعات مناسبى از ریز ساختار و کیفیت بتن بدست آورد. با توجه به اینکه در مطالعات مربوط بهپایائى بتن نظیر بررسى پایائى بتن در برابر نفوذ یون کلر و حملات سولفاتى، در اغلب موارد سیال مهاجم از خارج بتن به داخل بتن نفوذ مى‏کند، بنابراین میزان نفوذ پذیرى، قابلیت بتن را براى سهولت و یا صعوبت ورود سیال به داخل محیط متخلخل بتن مشخص مى‏نماید. به این ترتیب در بسیارى از منابع معتبر "نفوذ پذیرى به عنوان کلیدپایائى بتن قلمداد شده است.

در سازه ‏هاى بتنى، بتن پوشش سطحى در اولویت نخست، از خوردگی آرماتورها حفاظت مى‏کند. بنابراین از دیدگاه خوردگى آرماتور این منطقه سطحى در معرض نفوذ گاز اکسیژن، گاز کربنیک و آب قرار دارد. نفوذ دو سیال گاز کربنیک و آب ریز ساختار بتن را تـغییر مى‏دهد و بنابرایـن این‏دو براى انـجام آزمایش قابل تکرار مناسب نیستند. به این جهت است که به نظر مى‏رسد گاز اکسیژن براى انجام آزمایش نفوذ پذیرى بتن مناسب‏ترین سیال باشد.

در مبحث مربوط به خوردگى آرماتور در بتن و در تشکیل پیل الکتروشیمیایى، وجود اکسیژن براى تشکیل پروسه کاتد ضرورى است. همچنین روند خوردگى از دو مرحله شروع خوردگى و گسترش خوردگى تشکیل مى‏شود. براساس تحقیقات انجام شده نفوذ اکسیژن در مرحله گسترش خوردگى آرماتور در بتن اهمیت دارد.

غیر قابل نفوذ بودن بتن همچنین در رابطه با آب بندی مخازن مایعات و گازها، راکتورهای اتمی و مخازن فاضلاب و تصفیه گاز مورد توجه می باشد و الزامات معمول آن است که بتن باید از نفوذ هوا تحت فشار داخلی معینی جلوگیری نماید. همچنین نفوذ گاز در بتن با مسائل فشار هیدرواستاتیکی و داخل سدها نیز مورد توجه می باشد. از طرف دیگر اندازه گیری ضریب نفوذپذیری بتن در برابر گاز نیز مزایایی دارد که از جمله این موارد می توان به سریع بودن انجام آزمایش و عدم تغییر شرایط آزمونه در زمان انجام آزمایش اشاره نمود.

نفوذ پذیرى یک ویژگى ریز ساختارى بتن است که میزان قابلیت بتن را براى عبور سیالى با ویسکوزیته مشخص تحت گرادیان فشار نشان مى‏دهد.

قانون Darcy(1856) داراى فرم ساده زیر مى‏باشد و رابطه بین سرعت حرکت سیال و گرادیان فشار را نشان مى‏دهد:

v=Kv.i

:v سرعت خطى ظاهرى سیال (v=Q/A)(m/s)

:Kv ضریب نفوذ پذیرى دارسى (m/s)

:i گرادیان هیدرولیکى، افت فشار (بدون بعد(

حرکت سیالات از درون بتن از طریق منافذ موئینه و یا ناحیه مرزی بین ماتریس و سنگدانه صورت می گیرد. این در حالیست که به دلیلی کوچکی بسیار زیاد منافذ ژلی، عملا امکان عبور سیال از آن وجود ندارد.

یکی از مهمترین پارامترهایی که بر تخلخل بتن تاثیر می گذارد، نسبت آب به سیمان است. تاثیر نسبت آب به سیمان بر اندازه حفرات و تخلخل بتن در شکل زیر آورده شده است. باید متذکر گردید که نفوذ پذیری بتن تنها تابعی از تخلخل آن نمی باشد، بلکه به اندازه، توزیع و پیوستگی منافذ نیز بستگی دارد.

2) ساز و کارهای حرکت سیال در داخل بتن

سیال به یکی از روش های زیر درون سیال حرکت می کند :

1- جذب سطحی (Adsorption)

2- انتشار (Diffusion)

3- مکش موئینه (Absorption)

4- نفوذپذیری (Permeability)

هر یک از پدیده های نفوذ یون کلر،کربناتاسیون، حملات سولفاتی و انهدام ناشی از سیکل ذوب و یخ در بتن با توجه به یکی از مکانیزم های فوق یا ترکیبی از آن ها صورت می پذیرد.

3) روش های اندازه گیری ضریب نفوذپذیری بتن در برابر گاز

تا کنون روش های مختلفی برای اندازه گیری ضریب نفوذپذیری بتن در برابر گاز توسط محققین پیشنهاد شده است. این روش ها عموما به دو دسته، آزمایشهای نفوذپذیری گاز با اختلاف فشار ثابت و آزمایش های نفوذپذیری گاز با افت فشار (فشار کاهنده) تقسیم بندی می شوند. روش های اندازه گیری ضریب نفوذپذیری گاز با اختلاف فشار ثابت عبارتند از :

1- توصیه CEMBUREAU (توصیه انجمن سیمان اروپا)، این روش مورد تائید کمیته RILEM TC 116-PCD می باشد و در استاندارد ملی ایتالیاUNI با کد 58-E0031 آورده شده است.

2- توصیه AFGC-AFREM(انجمن مهندسی عمران فرانسه)

3- روش LNEC E-392 یا توصیه ملی پرتغال؛ این توصیه نامه استفاده از نفوذسنج تهیه شده توسط پروفسور Cabrera را که در سال 1999 میلادی در دانشگاه Leeds ساخته شده توصیه می کند.

4- روش انستیتو نفت فرانسه؛ در دانشگاه Sherbrooke کانادا و آزمایشگاه پایایی و مصالح ساختمانی تولوز فرانسه (LMDC) که تحقیقات گسترده ای را بر روی نفودپذیری گاز انجام داده اند, از این روش استفاده شده است.

5- استاندارد امریکایی ASTM D 4525-90؛ این روش که برای تعیین نفوذپذیری سنگ در برابر نفوذ گاز ارائه شده است برای سنجش نفوذپذیری بتن نیز قابل استفاده است.

همچنین روش های اندازه گیری ضریب نفوذپذیری گاز با افت فشار عبارتند از:

1- آزمایش های مکش در سوراخ دریل شده در سطح بتن

2- آزمایش های وارد کردن فشار در سوراخ دریل شده در سطح بتن

3- آزمایش های مکش سطحی

4- آزمایش های وارد آوردن فشار سطحی

4) توضیح دستگاه اندازه‏گیرى نفوذ پذیرى بتن در برابر گاز اکسیژن، توصیه AFPC-AFREM,Cembureau

دستگاه اندازه‏گیرى نفوذ پذیرى بتن در برابر اکسیژن که براساس دبى خروجى گاز اکـسیژن از نـمونه بتنى مـى‏باشد، براساس توصیه Cembureau و AFREM - AFPC ساخته شده است. این دستگاه در حال حاضر در مراکز تحقیقاتى بتن در بسیارى از کشورهاى اروپایى وجود دارد و در پروژه‏هاى تحقیقاتى و مشاوره‏اى خصوصاً در سازه‏هاى آبى و همچنین سازه‏هاى در معرض عوامل خورنده محیطى مورد استفاده قرار مى‏گیرد.

4-1) شرح اجزاى دستگاه نفوذ هوا و شکل شماتیک آن

این دستگاه وسیله‏اى براى اندازه‏گیرى دبى اکسیژن است که شامل قطعات زیر مى‏باشد:

- شیر تنظیم فشار تنظیم کننده فشار ورودى سلول

- لوله‏هاى شیشه‏اى با حجم‏هاى مختلف (160 و 20 و 5 و 2 میلى لیتر(

- سلول انجام آزمایش که خود شامل پنج بخش مى‏باشد: 1- محفظه آلومینیومى 2- دو صفحه پخش کننده هوا براى کسب اطمینان از عبور اکسیژن از تمام سطح قطعه بتنى 3- غشاى پلى اورتان به دور دیسک بتنى -4تیوپ هوا 5 - درپوش

ضمناً براى انجام آزمایش از دو کپسول بزرگ مایع استفاده میگردد:

-1 کپسول اکسیژن براى تأمین گاز عبورى از آزمونه

-2 کپسول ازت براى باد کردن تیوپ به دور دیسک بتنى تا فشار حداکثر 12 اتمسفر

4-2) مشخصات آزمونه

آزمونه‏ها با توجه به حداکثر بعد سنگدانه موجود در بتن به صورت قطعاتى با قطر 15 سانتیمتر و ضخامت 50 یا 65 میلیمتر تهیه مى‏شوند. ضخامت نمونه باید از 2/5 برابر حداکثر بعد سنگدانه بزرگتر باشد. بعد بزرگترین سنگدانه تا 25 میلیمتر توصیه شده است . براى تهیه این دیسکهاى بتنى باید نمونه‏هاى استوانه‏اى استاندارد (استوانه‏هاى با قطر 15 سانتیمتر و ارتفاع 30 سانتیمتر) را با ضخامت مورد نیاز برش زده و سپس با تهیه حداقل 3 دیسک بتنى از یک نمونه استوانه‏اى استاندارد، آزمایش را بر روى هر سه نمونه به صورت متوالى انجام داد.

چنانچه از مغزه‏هاى کرگیرى شده براى انجام آزمایش استفاده شود باید مطمئن بود که نمونه تهیه شده ترک خورده و آسیب دیده نباشد. چنانچه قطر و یا ارتفاع مغزه از مقادیر گفته شده قبلى کمتر باشد مى‏توان با استفاده از رزین غیر قابل نفوذ براى جبران کمبود قطر و یا جدا کننده (براى جبران کمبود ارتفاع) استفاده کرد. البته در تحلیل نتایج بدست آمده باید دقت زیادى نمود.

این روش براى بتن‏هاى با عـیار سیـمان حـدود 200 تـا kg/m3 450و مقادیر ضریب نـفوذ پذیرى در برابر اکسیژن بین10-19 m2 تا10-14m2 نتایج قابل قبولى مى‏دهد..

5) رابطه ضرایب نفوذ پذیرى بتن در برابر آب و در برابر گاز اکسیژن

اندازه‏گیرى ضریب نفوذ پذیرى بتن در برابر آب از سالها پیش در کشورمان متداول بوده است و خصوصاً در پروژه‏هاى سد سازى مورد کاربرد قرار گرفته است. در عین حال در ساختمانهاى معمول، بتن سطحى که حفاظت آرماتورها را بر عهده دارد در معرض نفوذ اکسیژن، گاز کربنیک و آب قرار دارد. عملاً انجام آزمایش نفوذ پذیرى با گاز اکسیژن از دو سیال دیگر ساده‏تر و قابل تکرارتر است و این گاز واکنشى هم با محیط بتن نخواهد داد.

چنانچه مقادیر محاسبه شده براى ضرائب نفوذ پذیرى آب و گاز بر حسب m2 ضریب نفوذ پذیرى واقعى بتن بود باید این مقادیر یکسان باشند ولى عملاً ضریب نفوذ پذیرى در برابر گاز بزرگتر است و براى بتن‏هاى با ضریب نفوذ پذیرى کم این اختلاف زیادتر است.

اختلاف بین ضرائب نفوذ پذیرى بتن در برابر گاز و آب را مى‏توان به موارد زیر نسبت داد:

-1 فعل و انفعال شیمیایى آب با سیمان موجب دوباره هیدراته شدن ذرات سیمان هیدراته نشده مى‏شود و انحلال، ته نشینى و جابجائى ذرات ریز و جذب آب در تخلخل‏هاى کوچک ماتریس سیمان موجب کاهش نفوذ پذیرى مى‏گردد.

-2 اثرklinkenberg و یا تئورى لغزش گازها، براساس این تئورى گاز نزدیک به دیواره موئینه یک سرعت حدى دارد و بنابراین کمیت جریان گاز از طریق موئینه‏ها بیش از مقدارى است که با قانون Poiseuille پیش بینى شده است. همچنین این اثر زمانى پدید مى‏آید که مسیر آزاد در مولـکولهاى گـاز نسبت به قطر منافذ موئینه به قدر کافى بزرگ باشد. میزان اثر Klinkenberg به توزیع اندازه تخلخل‏ها و مقدار متوسط فشار آزمایشى دارد. این اثر وقتى که فشار آزمایش زیاد باشد کمتر مى‏شود. البته این اثر تا حدود کمى اختلاف بین دو ضریب نفوذ پذیرى را توجیه مى‏کند.

در اندازه‏گیرى ضریب نفوذ پذیرى ذاتى مصالح، مقادیر بدست آمده براساس آزمایش با آب به نحو بهترى ریز ساختار بتن را نشان مى‏دهد. براى اندازه‏گیرى ضریب نفوذ پذیرى بتن در برابر گاز که به مقادیر ضریب نفوذ پذیرى ذاتى نزدیکتر باشد باید از فشارهاى زیاد استفاده کرد. در شکل زیر رابطه بین ضرائب نفوذپذیرى نشان داده شده است.

اختلاف بین ضرایب نفوذ پذیرى بتن در برابر گاز و مایع براى بتن‏هاى با ضریب نفوذ پذیرى کم، زیادتر است. براى یک بتن متداول سازه‏اى که ضریب نفوذ پذیرى آن در برابر آب حدود 10-18 m2است، ضریب نفوذ پذیرى در برابر گاز براى فشار حدود 6 اتمسفر ممکن است 100 برابر زیادتر باشد. نتـایج بـدست آمـده از آزمایشها بـراى بـتن معمولى نسبت‏هاى کوچکتر از 100 را نشان مى‏دهد.

روابط زیر براى بدست آوردن ضریب نفوذپذیرى در برابرآب(Kl)با داشتن ضریب نفوذپذیرى در برابر گاز Kg بکار مى‏رود. kl=kg/(1+b/pm)

b از رابطه زیر قابل محاسبه است:

در بسیاری از کشورها، ضریب نفوذپذیری بتن در برابر گاز اکسیژن به عنوان یک از معیارهای پذیرش پایایی بتن شناخته می شود. به عنوان نمونه، Torrent بتن ها را از نظر کیفی بر اساس میزان ضریب نفوذپذیریست .

6) فعالیت های پژوهشی و مشاوره ای

دستگاه نفوذپذیری بتن در برابر گاز اکسیژن بر اساس روش CEMBUREAU TC 116-PCD RILEM در سال 1382 در این انستیتو راه اندازی شد و از همان زمان پروژه های متعدد پژوهشی و مشاوره ای انجام گرفت.

رئوس فعالیت های پژوهشی و مشاوره ای انجام شده عبارتند از :

1) تاثیر پوزولان

2) تاثیر مواد حباب ساز

3) مقایسه نفوذزذیری بتن در برابر گاز اکسی›ن و عمق نفوذ آب

4) بررسی رابطه بین مقاومت فشاری بتن و ضریب نفوذپذیری بتن در برابر گاز اکسیژن

5) مقایسه ضریب نفوذپذیری بتن در برابر گاز و آب

نتیجه گیری

نفوذپذیری یک ویژگی ریز ساختاری بتون است که میزان قابلیت این ماده ساختمانی را برای عبور سیالی با ویسکوزیته مشخص و تحت گرادیان فشار نشان می دهد. ضریب نفوذپذیری ارتباط مستقیمی با ریز ساختار و کیفیت بتن دارد. در بسیاری از منابع معتبر ضریب نفوذپذیری به عنوان کلید پایایی بتن قلمداد شده است.

به نظر می رسد با توجه به اهمیت پایایی بتن در شرایط محیطی مختلف در نواحی گوناگون کشور، باید در راستای گسترش روش های متداول و معتبر برای ارزیابی کیفی بتن و ضوابط پذیرش بتن اقدام نمود و بر اساس نتایج بدست آمده معیارهایی نظیر ضریب نفوذپذیری بتن دربرابر گاز اکسیژن را نیز در آیین نامه های ملی منظور نمود.

8) تعدادی از مراجع

1) Bakhshi, M., Mahoutian, M. and Shekarchi, M., “The Gas Permeability of Concrete and Its Relationship with Strength”; Second International fib Congress, Naples, Italy, June 2006.

2) Mahoutian M., Bakhshi, M. and Shekarchi, M., “Study on Gas Permeability of Air-Entrained Concrete” Ninth CANMET/ACI International Conference on Advances in Concrete Technology, Poland, May - June 2007(accepted).

3)Mahoutian M., Bakhshi, M.,Bonakdar A. and Shekarchi, M., “Effect of High Reactivity Metakaolin on the Gas Permeability of High Performance Concrete Mixture” Ninth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, POLAND, May - June 2007(accepted).

4)محمد شکرچی زاده، مهدی بخشی، " نفوذپذیری بتن در برابر گاز اکسیژن"، مجله انجمن بتن ایران‏‌‏‏‏‏‏‏‏‏، شماره 13، صفحه 21-16 بهار1383.

5)محمد شکرچی زاده، مهدی بخشی و مهرداد ماهوتیان ، " نفوذپذیری بتن در برابر گاز اکسیژن"، دومین کنفرانس بین المللی بتن وتوسعه، جلد 2، صفحه 777-767، 1384.

مهندس محمد شکرچی زاده

 

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


تصفیه فاضلاب

باتوجه به روند افزایش جمعیت در شهرهای بزرگ که خود بصورت طبیعی باعث افزایش میزان فاضلاب شهری میگردد زمینه تشکیل سیستم جمع آوری و تصفیه فاضلاب شهری امری لازم و ضروری به نظر میرسد .

● فاضلاب :

فاضلابی که به تصفیه خانه شهری میرسد ، مجموع فاضلابی است که از سه منبع مختلف در شبکه فاضلاب وارد میشود . این سه منبع عبارتند از :

الف) فاضلاب خانگی

ب) نشت آب

ج) پساب صنعتی

بنا بر تعریف مجموعه فاضلاب حاصله از سه منبع را فاضلاب شهری یا فاضلاب بهداشتی خوانند .

البته ممکن است برای شهرهای ایران در شرایط موجود از مقدار مربوط به پساب صنعتی صرف نظر کرد ولی نشت آب به ویژه در شهرهایی که سطح سفره آب زیرزمینی آنها بالا است بسیار اهمیّت دارد .

معمولاً مقدار فاضلابی را که در طرح در نظر میگیرند معادل مقدار فاضلاب متوسط شبانه روز در مواقع غیربارانی است . باید توجّه داشت که این رقم کاملاً قراردادی است زیرا در ساعات مختلف شبانه روز مقدار فاضلاب از مقدار متوسط در 24 ساعت مرتبا کمتر و یا بیشتر میشود و عملاً معادل آن جز در چند لحظه ممکن نمیگردد . یکی از طرق تعیین مقدار متوسط فاضلاب در 24 ساعت تعیین آب مصرفی در شهر است .

با داشتن آماری مناسب از مصرف سرانه آب شهر و تعیین حدود منطقه فاضلاب گیر و بالاخره تعداد افراد ساکن در منطقه فاضلاب گیر ، به راحتی میتوان مقدار متوسط فاضلاب روزانه را حساب کرد . البته این طریقه در شهرهای بزرگ و یا شهرهایی که در آنها خانه سازی کامل نشده باشد چندان صدق نمیکند و در این صورت باید رقمی برای مقدار فاضلاب سرانه در نظر گرفت ، که مطابق با شرایط واقعی باشد . در شهرهای بزرگ مصرف آب هتل ها و رستورانها و بیمارستانها که به تعداد زیاد وجود دارند در موقع اندازه گیری آب مصرفی سرانه بحساب نمیآید ، در حالیکه در عمل آنها نیز به صورت فاضلاب به شبکه وارد میشود . حدود این تغییرات شاید به 25 لیتر به ازاء هر نفر در روز نیز برسد . لذا باید در طرح شبکه فاضلاب برای چنین شهرهایی نهایت دقت را از نظر انتخاب مقدار واقعی فاضلاب مبذول داشت زیرا این موضوع از نظر فنی و اقتصادی عامل مهمی است .

● مقدار متوسط فاضلاب روزانه :

طبق توصیه کمیته استاندارد فاضلاب سازمان برنامه تا زمانی که اندازه گیری های واقعی از مقدار فاضلاب شهرهای مختلف در ایران عملی نشده است رقم 150 لیتر به ازاء هر نفر در روز را میتوان در طرحهای شبکه فاضلاب به کار برد . ( این رقم شامل نشت آب نیز میباشد . )

● تصفیه فاضلاب در مجاورت باکتریهای هوازی :

اگر در حین تجزیه مواد ، اکسیژن به مقدار لازم و به طور مرتب به فاضلاب برسد باکتریهای هوازی عمل تجزیه را شروع نموده و عمل مینماید . چنانکه ملاحظه میشود ابتدا مواد آلی ازت دار تبدیل به آمونیاک و سپس به نیتریت و نیترات میگردد . نیترات ها که در واقع جزو مواد غذایی بسیار مناسب برای گیاهان محسوب میشود توسط گیاه جذب و باعث رشد بهتر آنها میگردد . از طرفی خود گیاهان نیز توسط حیوانات خورده شده و در ساختمان سلولهای بدن آنها کمک مینماید . مواد آلی فوق دوباره به صورت مواد آلی پس مانده دفع شده و این گردش بیانتها از نو آغاز میشود . در تمام این تحولات اکسیژن برای تنفس موجودات زنده و همچنین سایر تغییرات و تبدیلات شیمیایی دیگر و به منظور تثبیت مواد کربنی و سولفوری بصورت کربناتها و سولفاتها لازم است .

● تصفیه و تجزیه فاضلاب در مجاورت باکتریهای غیر هوازی :

زمانیکه اکسیژن در مجاورت فاضلاب نباشد ، باکتریهای هوازی دیگر قادر به ادامه حیات و استفاده از مواد غذائی نخواهند بود . در چنین حالتی باکتریهای غیرهوازی که قادر به استفاده از اکسیژن مواد آلی هستند وارد میگردند . بدین ترتیب تجزیه مواد در اثر وجود باکتریهای غیرهوازی ، سبب بوجود آمدن اسیدهای آلی ، کربناتهای اسیدی ، اکسید کرین و هیدروژن سولفوره شده و در مرحله بعدی آمونیاک ، کربناتهای اسیدی اکسید کربن و سولفیتها بوجود میآیند . در مرحله نهایی تجزیه و تخمیر ، آمونیاک ، متان ، اکسید کربن و سولفیتها بوجود میآیند . در مرحله نهایی تجزیه و تخمیر ، آمونیاک ،متان ، اکسید کربن و سولفیت ها تولید میگردند . در تصفیه خانه های فاضلاب ، حوضهای هوارسانی ، واحد اصلی در تجزیه و تصفیه فاضلاب یعنی از بین بردن مواد آلی و کاهش مقدار ( بی . او . دی ) میباشد و در واقع در این واحد است که تصفیه در مجاورت باکتریهای هوازی انجام میگیرد . تجزیه و تخمیر مواد لبنی که در آنها هوا دمیده نمیشود را هضم لجن مینامند که توسط باکتریهای هوازی و در مخازن هاضم انجام میپذیرد و تولید گازهای متان و اکسید کربن مؤید چنین تخمیری است .

● لزوم آزمایشات فاضلاب :

فاضلاب را به منظور زیر آزمایش تحلیلی میکنند .

الف) تعیین و تشخیص مواد متشکله اش که اطلاع از آن در رفع مشکلات تصفیه خانه سودمند است .

ب) تصمیم در انتخاب نوع وسائل و روش تصفیه

ج) تنظیم و کنترل هر یک از واحدهای تصفیه خانه در جریان تصفیه فاضلاب

د) تعیین مشخصات فاضلاب خروجی و مقایسه آن با مشخصات فاضلاب ورودی برای اطلاع از بازده تصفیه خانه .

● آزمایش تحلیلی فاضلاب :

آزمایشاتی که از فاضلاب بعمل میآید شامل آزمایشهای فیزیکی ، مطالعات بهداشتی ، آزمایشهای شیمیایی و بالاخره آزمایشهای زیستی است . مجموع تمام آزمایشهای شیمیایی و بالاخره آزمایشهای زیستی است . مجموع تمام آزمایشهای معمول در کار فاضلاب را آزمایش تحلیلی فاضلاب مینامند .

● آزمایش فیزیکی :

آزمایش های فیزیکی برای تعیین درجه حرارت ، رنگ ، بو . تیرگی فاضلاب است . اطلاع از درجه حرارت از نظر بازده عملیات واحدها بسیار مهم است . رنگ فاضلاب در تشخیص ظاهری و فوری آن کمک میکند فاضلاب تازه به رنگ خاکستری است ، رنگهای تیره و سیاه دال بر کهنگی فاضلاب و مطمئناً همراه با تعفن است . بوی فاضلاب نیز ناشی از ماندگی فاضلاب است ، همانطور که تیرگی آن نتیجه کهنگی میباشد البته باید توجّه داشت که فاضلاب اصولا تیره میباشد ولی فاضلاب کهنه تیرگیش شدیدتر است .

● مطالعات بهداشتی :

تعیین و اطلاع از منابع دفع فاضلاب شهر به شبکه جمع آوری فاضلاب حائز اهمیّت است . مثلاً اطلاع از اینکه تاسیسات بهداشتی بزرگی از قبیل بیمارستانها و آسایشگاه ها ، فاضلاب خود را به شبکه شهر وارد میسازند و با این کار پساب کارخانجات به شبکه مذکور تخلیه میگردد از نظر انتخاب روشهای تصفیه فاضلاب ، مؤثر واقع خواهد شد .

● آزمایشات شیمیایی :

آزمایشات شیمیایی که در واقع اساسی ترین آزمایشات فاضلاب محسوب میشود به شرح ذیل است :

الف) تعیین خاصیت اسیدی و یا قلیایی

ب) مواد متشکله

ج) اکسیژن محلول ،

د) شدت آلودگی
● آزمایشات زیستی :

در فاضلاب انواع مختلف موجودات ریز ذره بینی یافت میشوند . کوچکترین آنها از نوع ویروسی است که با میکروسکوپهای قوی نیز دیده نمیشوند . پس از ویروس ها باید از باکتریها نام برد که معمولاً با کمک میکروسکوپهای بسیار قوی قابل رویت است . دست سوم را موجودات ریز ذره بینی تشکیل میدهند که با میکروسکوپهای عادی هم میتوان آنها را دید .

موجودات زنده در فاضلاب ممکن است مضر و یا مفید باشند . باکتریهای مضر موجود در فاضلاب ضدعفونی نشده ، سبب آلودگی منابع طبیعی آب گردیده و در صورت آشامیدن بر اثر وجود باکتریهای پاتوژنیک موجب بروز امراض مختلفی نظیر اسهال خونی میگردند . باید توجّه داشت که تعداد زیاد موجودات زنده در فاضلاب دلیل بر آلودگی شدید آن نیست و از نظر انتخاب واحدهای تصفیه خانه نیز تاثیری ندارد . ولی عدم وجود باکتری ها دلیل بر وجود پساب صنعتی در فاضلاب شهری به مقدار زیاد است . تعداد باکتریها در فاضلاب شهری بین 2 تا 20 میلیون در هر میلیلیتر تغییر میکند .

● آشغالگیری و آشغالگیرها :

شناسائی : آشغالگیرها عبارت از وسیله ای است که در ابتدای تصفیه خانه از نظر تأمین مقاصد زیرین تعبیه میگردد :

الف ) حفاظت تلمبه ها ، لوله های لجن و حوضهای ته نشینی در مقابل گرفتگی

ب ) خوشایند کردن وضع ظاهری واحد های مختلف تصفیه خانه

ج ) تأثیر کامل مواد ضد عفونی نظیر کلر بر فاضلاب تصفیه شده ، باتوجه به اینکه مواد ضد عفونی بر روی مواد جامد شناور چندان تاثیری ندارد .

بدین ترتیب سعی میشود مواد جامد شناور نظیر کاغذ و پارچه و غیره حتی الامکان ، از جریان تصفیه خارج گردد . از نظر موقعیت ، آشغالگیر را باید در محلی که به سهولت قابل دسترسی و تمیز کردن باشد بنا نمود .

● انواع آشغالگیرها :

آشغالگیرها را از شبکه های سیمی یا صفحات فلزی سوراخدار و بالاخره از میله هایی که در فواصل معینی از یکدیگر قرار گرفته اند میسازند . معمولاً در تصفیه فاضلاب شهری از آشغالگیرهای میله ای و در تصفیه پساب صنعتی از انواع دیگر آن استفاده میکنند . انواع آشغالگیر میله ای ؛ دهانه فراخ و دهانه تنگ .

آشغال خردکن ها :

شناسایی ؛ آشغال خرد کن عبارت از وسیله ایست که برای انجام مقاصد زیر در ابتدای تصفیه خانه و بعد از آشغالگیر میله ای دهانه فراخ نصب میکنند :

الف) رفع مشکلات ناشی از دفع مواد شناور جمع آوری شده .

ب) حفظ وضع ظاهری تصفیه خانه در محل آشغالگیر .

ج) جلوگیری از ایجاد بو و رشد و نمو مگس در محل آشغالگیر .

انواع آشغال خردکن و طرز کار آنها دو روش مختلف برای خرد کردن مواد جامد شناور و غیرشناور وجود دارد . یکی آنکه دستگاه به طور مرتب و در تمام مدت شبانه روز کار میکند ، دوم اینکه بطور متناوب و برحسب مقدار آشغال ورودی بکار افتاده و مواد را خرد میکند . نوع اول که در اکثر کشورهای اروپایی و آمریکایی معمول است ، از کل استوانه دوار با شیارهای افقی و یک تیغه برای ثابت تشکیل شده است . در اثر دوران استوانه و جریان فاضلاب به داخل آن مواد روی بدنه استوانه جمع شده و توسط تیغه بران خرد میشوند و از لای شیارها عبور کرده و به واحدهای بعدی تصفیه خانه رانده میشوند . دهانه شیارها در آشغال خردکن های مختلف در حدود 4 تا 9 میلیمتر میباشد . نوع دوم که در آلمان ساخته میشود ، از میله های نیم دایره ای شکل و یک آشغال روب و بالاخره دستگاه خرد کننده تشکیل شده است . مواد شناور که به تدریج روی میله ها جمع میشود سبب بالا آمدن سطح فاضلاب در بالا دست وایجاد اختلاف ارتفاعی در دو سمت میله ها میگردد .

هرگاه این اختلاف از حد معینی بیشتر شد آشغال روب بکار افتاده و مواد را به سمت دستگاه خرد کننده که جنب کانال اصلی است هدایت میکند .

● حوض های دانه گیری :

▪ تعریف دانه : تمام مواد جامد دانه ای ، اعم از شن ، ماسه ، نرمه خاک ، خاکستر و مواد ریز معدنی دیگر و یا هسته میوه جات و دانه های نباتی و بالاخره هر نوع مواد دانه ای اعم از معدنی و یا آلی ، در مبحث فاضلاب « دانه » اطلاق میشود مشروط بر آنکه دارای صفات زیر باشد

الف) در جریان تصفیه تجزیه و فاسد نشود.

ب) سرعت ته نشینی آن بیش از سرعت ته نشینی مواد جامد فاسد شدنی از جنس آلی باشد .

▪ شناسائی : حوضهای دانه گیری را برای انجام مقاصد زیر بنا میکنند :

الف) حفاظت وسایل مکانیکی در مقابل سایش

ب) کاهش در گرفتگی لوله ها که در اثر ته نشینی مواد دانه ای بویژه در تغییر جهت جریان حادث میگردد . ج) سهولت در تمیز کردن حوضهای ته نشینی و مخازن هاضم .

در تصفیه خانه ها معمولاً اگر از آشغالگیر استفاده شود ، حوض دانه گیری را بعد از آن بنا میکنند تا از ورود مواد شناور نظیر پارچه و کاغذ بداخل حوض دانه گیری جلوگیری بعمل آید . زیرا وجود این مواد سبب بروز اشکالاتی در کار دانه روبهای مکانیکی میگردد .

موقعیت حوضهای دانه گیری بست به آشغال خرد کن بر حسب شرایط محلی و نوع تصفیه خانه فرق کرده ممکن است قبل و یا بعد از آشغال خرد کن و حتی قبل از تلمبه خانه اصلی تصفیه خانه فاضلاب نیز ساخته شود .

● طرق مختلف دانه گیری :

بطور کلی دو طریقه برای ته نشین ساختن دانه ها موجود است :

الف ) کم کردن سرعت جریان فاضلاب در حوضهای دانه گیری .

ب ) بوجود آوردن سرعتی ثابت در تمام طول حوض دانه گیری

● ته نشینی و حوضهای ته نشینی :

▪ تعریف ته نشینی ؛ منظور از ته نشینی در مبحث فاضلاب مجموعه عملیات زیر است :

الف) جدا نمودن مواد جامد معلق با ته نشین ساختن آنها .

ب) مجتمع کردن آنها جهت تسهیل در امر تخلیه و دفع .

ج) خارج کردن آنها از جریان تصفیه

عمل ته نشینی به دو طریق صورت میگیرد ، یکی ته نشینی شیمیایی است که با افزودن مواد شیمیایی ممکن میشود ، دیگری ته نشینی ساده است که در آن نیروی وزن عامل اصلی ته نشینی میباشد .

● ته نشینی شیمیایی :

در سال 1740 میلادی برای اولین بار روش ته نشینی شیمیایی در پاریس مورد تحقیق و آزمایش قرار گرفت. در سالهای 1857 ـ 1880 این طریقه ته نشینی در انگلستان مورد توجّه بیشتری واقع شد و روز به روز اهمیّت آن در امر تصفیه فاضلاب و آب بیشتر گردید . ته نشینی شیمیایی که در واقع به منزله تصفیه کاملی بود . با پیدایش طریقه تصفیه زیستی اهمیّت خود را از دست داد در حال حاضر ته نشینی شیمیایی بندرت در تصفیه فاضلاب شهری بکار می رود و فقط در حالات خاصی ، مانند تصفیه پساب صنعتی ، ممکن است از این طریق استفاده نموده به طور کلی علل عمده عدم پیشرفت این طریقه در تصفیه فاضلاب در دو مطلب زیر خلاصه میگردد :

1) مقدار کاهش ( بی ـ او ـ دی ) فاضلاب در طریقه شیمیایی در مقایسه با تصفیه به طریق زیستی کمتر است . یعنی بازده تصفیه زیستی بهتر از بازده تصفیه شیمیایی است .

2) مواد لجنی در این طریقه بصورت انباشته در آمده و عمل جمع آوری تخلیه را مشکل میسازد .

● حوضهای ته نشینی :

▪ تئوری ته نشینی : اگر مایعی که محتوی ذرات جامد است در حالت سکون قرار گیرد به تدریج آن قسمت از ذرات جامد که دارای وزن مخصوصی بیش از وزن مخصوص مایع میباشد شروع به سقوط و ته نشینی می نماید . این موضوع ظاهراً ساده در واقع اساس طرح و محاسبات حوضهای ته نشینی را تشکیل میدهد .

▪ شناسائی : حوضهای ته نشینی به منظور ته نشین ساختن مواد جامد ریز دانه به قطرهای کمتر از 2/0 میلیمتر ، و تخلیه آنها ساخته میشود البته همان طور که گفته شد دانه های به قطر بیش از 2/0 میلیمتر توسط حوضهای دانه گیری قبلاً از جریان تصفیه خارج شده اند .

در این مرحله فاضلاب خروجی تصفیه شده دارای مواد معلق کمتری بوده و بالطبع زلالتر است و بدین ترتیب فاضلاب خروجی از نظر مصارف زراعتی کاملاً بدون اشکال میشود .

● انواع حوضهای ته نشینی :

حوضهای ته نشینی را میتوان بر حسب مواد زیر تقسیم بندی نمود .

الف) ماهیت کار .

ب) طرز ته نشینی و تخلیه لجن جمع آوری شد

ج) شکل ظاهری

د) ادواتی که برای لجن روبی بکار مییروند .

● صافیهای چکنده :

▪ شناسائی : صافیهای چکنده براساس تصفیه طبیعی که در رودخانه ها در اثر رشد و نمو موجودات زنده ذره بینی و بوجود آمدن لایه لجنی لزج که موجب تصفیه و تمیز شدن آب رودخانه میگردد ، بوجود آمد . فرق عمده تصفیه فاضلاب دفع شده در رودخانه و با عبور دادن آن از صافیهای چکنده ، سرعت بیشتر در امر تصفیه است .

● کلرزنی :

▪ شناسائی : به منظور تأمین مقاصد زیر از ترکیبات شیمیایی کلردار در تصفیه خانه های فاضلاب استفاده میکنند .

الف) گندزدایی فاضلاب خروجی .

ب) کاهش مقدار ( بی ـ او ـ دی ) .

ج) جلوگیری از بو

د) جلوگیری از خورده شدن بتن و ادوات مکانیکی توسط مواد اسیدی تولید شده در جریان تصفیه .

* جلوگیری از خوردگی بتن در فاضلاب ها یا مخازن بتنی در هنگام بتون ریزی از مواد افزودنی های بتن باید استفاده شود و در هنگامی که مخازن بتنی دچار مشکل آب بندی می گردند باید از ملات های آب بند بتن و در قسمت هایی که مواد فاضلابی باعث تخریب بتن شده اند از ملات های تعمیری بتن یا ترمیم کننده بتن و همچنین از چسب لاتکس جهت اتصال بتن قدیم به جدید استفاده نمود .

هـ) جلوگیری از رشد و نمو مگس و حشرات در صافیهای چکنده ،

و) شکستن کفاب تولیدی در حوضهای ایمهاف .

در تصفیه خانه های بزرگ عموما از کلر مایع و در تصفیه خانه های کوچک معمولاً از ترکیبات کلردار استفاده میکنند . از جمله ترکیبات کلردار ، آهک کلردار است که به شکل گرد سفید رنگی با 35 درصد کلر میباشد ، و دیگر هیپوکلریت سدیم است که بصورت محلول مصرف میگردد و دارای 70 درصد کلر میباشد .

● لوله های مصرفی برای انتقال کلر :

برای انتقال کلر از لوله های چدنی ریزدانه و یا لوله های پلاستیکی (PVC ) میتوان استفاده کرد .

● طریقه مصرف کلر در جریان تصفیه فاضلاب :

مواضع مختلف کلرزنی در تصفیه خانه بطور خلاصه عبارتند از :

الف) فاضلابروی ورودی به تصفیه خانه.

ب) کانال ورودی به حوض ته نشینی یا حوض ته نشینی نهایی .

ج) کانال خروجی از حوضهای ته نشینی نخستین یا نهایی .

د) حوضهای کلر زنی و بالاخره ،

هـ) در فاضلابروی خروجی از تصفیه خانه

● اصول کار تصفیه فاضلاب خروجی تا حد زلال سازی :

باتوجه به اینکه فاضلاب خروجی چندان آلوده نمیباشد لذا میتوان از کلیه روشهای معمول در تصفیه آب نظیر صافیهای ماسه ای با سرعت کم یا زیاد استفاده نمود و یا صافیهای با دهانه های ذره بینی را که 15 سال پیش به بازار عرضه شد برای این منظور به کار برد .

درجه تصفیه حاصله ـ به طور کلی بازده واحدهای زلال سازی فاضلاب بیش از 50 درصد است و به همین جهت میتوان شدت آلودگی و مواد جامد معلق فاضلاب تصفیه شده را به 10 و حتی 5 میلیگرم در لیتر تقلیل داد .

● مراحل بعدی عبارتند از :


تصفیه و دفع لجن ، هضم لجن ، مخازن هاضم ، حوض تغلیظ لجن ، دفع لجن هضم شده ، آماده کردن لجن ، بسترهای لجن ، خشک کن ، دفع فاضلاب و ترقیق فاضلاب ، تلمبه و تلمبه خانه

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


www.clinicbeton.ir

تاریخچه ژئوممبرین، کاربرد ها و انواع آن


ژئوممبران: PVC-

ژئوممبران pvc محصول عایق بندی است که با آماده کردن رزین (کلراید پنی دینیل) مواد پرکردنی ماده رنگ زنی به همراه تثبیت کننده ها وقراردادن آنها درمعرض عملیات های لازم درقالب ریزی ها و نیز بر اثر حرارت به صورت یک فرم متجانس تشکیل می شود.

انواع ژئوممبران PVC-

ژئوممبران مضرس دار

ژئوممبران ضد باکتری

ژئوممبران با ژئوتکستایل لمینت شده

ژئوممبران pvc - شکل T

مشخصات ژئوممبران PVC-

1-مقاومت شیمیایی

2-جوش پذیری

3-انعطاف پذیری

4-انبساط وانقباض نسبی زیاد

مقاومت دربرابر اشعه UV5-

موارد کاربرد ورق ژئوممبران: pvc-

1-مخازن آب وتصفیخانه ، حوضچه ها واستخر

2-پشت بام و بالکن

3-تونل های زیر زمینی

4-پارکینگ های اتومبیل زیر زمینی

5-مصرف زیر کاشی

مشخصات ژئوممبران: - مضرس دار

ژئوممبران pvc مضرس دار (signal lair ) ورقی است شامل یک لایه باریک وکمرنگ برای سهولت درتشخیص صدمات که به آسانی در صورت صدمه با دید بصری قابل تشخیص است.

ژئوممبران T- Grip-

- نگه دارنده بتن بر روی ورق ژئوممبران در شیب ها ودیوارها

- در سیستم های فاضلاب

- دور ستون ها ولوله ها

مزایا

در صورت بکارگیری این عایقها جهت پوشش و نفوذ ناپذیر کردن کانال بخشی از مزایای آن بشرح زیر میباشد:

1- سرعت اجرای زیاد و زودتر به بهره برداری رسیدن کانال

2- کاهش عملیات خاکی و افزایش سرعت آب و دبی کانال

3-حذف لایه فیلتر زهکش

4- حذف عملیات تعویض خاک

5- افزایش عمر مفید کانال به چندین برابر عمر کانال بتنی و عدم نیاز به ترمیم و نگهداری

الف- نتایج و بحث

هدف از اجرای پوشش ، جلوگیری از تلفات آب ، فرسایش خاک ، کاهش هزینه های نگهداری کانال و جلوگیری از رشد علفهای هرز می باشد.هزینه های اجرایی هر متر مربعپوشش بتنی و ژئوممبران - بتنی تقریبا" با یکدیگر برابر می باشد بنابراین در شرایط مشابه مزیت استفاده از پوشش ژئوممبران جلوگیری از هدر رفتن آب و یا راندمان بالاتر انتقال می باشد. استفاده ازاین پوششها ضمن اینکه ازاتلاف مایعات محلولهای شیمیائی موجود درکانالها جلوگیری بعمل می آورد بعلت برخورداری ازتائیدیه های زیست محیطی ازآلودگی منابع آب وخاک نیزجلوگیری بعمل می آورد ازسوی دیگر استفاده از HDPE بعنوان جایگزین لاینینگ بتنی ویا رسی ازتخریب کف ودیواره های کانال بعلت خورندگی خاکهای بستر جلوگیری نموده ودوام دهها ساله بدون نیازبه تعمیرات ویا تعویض خاک را درخاکهای نامناسب ازقبیل گچی ، آهکی ، سولفات و000 را تضمین می نماید. برای احداث کانال در حین مواجهه با خاکهای نامناسب دو راه حل وجود دارد :

1-تعویض خاک منطقه و جایگزینی با خاک مناسب

2-استفاده از پوشش های ژئو ممبران – بتنی .شایان توجه میباشد در اجرای این پوشش در صورت رعایت ننمودن موارد زیر نتایج نامطلوب حاصل میشود .

1- عدم اجرای صحیح ژئو ممبران و پوشش بتنی

2- عدم استفاده از محصول مناسب

3- نشست خاک

4- عدم دقت در کارگذاری ژئو ممبران

5-عدم مهار صحیح ژئو ممبران

6-استفاده از بتن مگر در زیر پوشش ژئوممبران

مهمترین بخش در مورد لایه ژئو ممبرین مربوط به درز گیری ها و جوش دادن صفحات ژئوممبرین در محل میباشد . چرا که اگر نشتی در این مکانها رخ دهد طرح کا ر آیی خود را از دست داده و اهداف مورد نظر بر آورده نخواهد شد . روی هم رفته در طرحهای اجرا شده با ژئوممبرین حدود 15% صرفه جویی اقتصادی نسبت به طر ح های دیگر که از ژئو ممبرین استفاده نمی کنند میشود .

ژئوممبران‌ها

خصوصیات لازم یک ژئوممبران برای استفاده در دیوار آب بند به شرح زیر است:

- سختی بالا برای آسانی نصب

- مقاومت بالا در مقابل انواع مواد شیمیایی که شامل حلال‌های آلی نیز می‌باشد

- امکان نصب پروفیل‌های قفل و بست روی لبه صفحات ژئوممبران

- دوام مناسب در حالت مدفون

HDPE برای اکثر موارد بالا انتخاب مناسبی است. این ماده سختی کافی ندارد تا بتوان آن را مثل صفحه فولادی مستقیماً به داخل خاک راند ولی همانگونه که توضیح داده شده راه های زیادی برای نصب آن وجود دارد. وقتی که هزینه و در دسترس بودن آن نیز مد نظر قرار گیرد دیده می‌شود که در این نوع کاربرد انتخاب طبیعی می‌باشد. دلیل دیگر برای انتخاب HDPE قابلیتشکل یافتن آن توسط عملیات اکستروژن است.قفل و بست‌ها شکل‌های پیچیده ای دارند که توسط فرآیند اکستروژن ساخته می‌شوند و سپس به طول مورد نظر بریده شده و به پانل‌های ژئوممبران جوش امتزاجی داده می‌شوند. اکنون به عملکرد HDPE

در حالت مدفون در دراز مدت پرداخته می‌شود. غیر از تنش که ممکن است منجر به ایجاد ترک در مواردی شود عوامل کمی می‌توانند عمر ژئوممبران HDPE را در حالت مدفون کوتاه کنند یکی از آنها قرار گرفتن د رمعرض مواد شیمیای است. تا کنون صدها آزمایش سازگاری طبق استاندارد9090EPA بر روی HDPE با انواع مواد شیمیایی انجام گرفته است که در هیچ یک از این آزمایش‌ها تخریب مشاهده نشده است.

در مورد هیدروکربنها با غلظت زیاد (هیدروکربن‌های کلرینه و آروماتیک نامطلوبترین آنها هستند) کاهش مقاومت حد تسلیم کششی تا 30% می‌تواند رخ دهد. این به خاطر روان شدگی فیزیکی است که HDPE را نرم می‌کند. البته این واکنش قابل برگشت است، یعنی زمانی که اجازه خروج به مواد شیمیایی داده شود، مقاومت اولیه باز می‌گردد.

یکی از مهمترین خصوصیات دیوارهای آب‌بند، نفوذناپذیری در مقابل مواد شیمیایی است. لازم است نفوذپذیری شیمیایی ژئوممبران از نفوذپذیری که معمولاًدر مهندسی ژئوتکنیک به آن اشاره می‌شود متمایز شود. در حالت خاک‌ها و سایر مواد متخلخل، انتقال آب (یا سایر مواد شیمیایی) از حفرات خاک، ترکها یا شکستگیها رخ می‌دهد. در صورتی که در نفوذپذیری شیمیایی، ماده شیمیایی از یک غشا غیر متخلخل در سطح مولکولی عبور خواهد کرد. مولکولهای می‌توانند به طریقی خود را از بین زنجیرهای پلیمری عبور دهند.

HDEP یک ماده پلاستیک نیمه بلوری است که آن را د رمقابل نفوذپذیری شیمیایی مقاوم می‌سازد. باید دانست که هیچ پلیمری نسبت به مواد شیمیایی کاملاً عایق نیست همیشه مقداری تراوش رخ می‌دهد. سوال اساسی این است که آیا مقدار نفوذپذیری قابل قبول است یا خیر.

عوامل زیادی در مقدار نفوذپذیری شیمیایی ژئوممبران تاثیر می‌گذارد. این عوامل شامل تمرکز شیمیایی، دما و ضخامت ورق است. نفوذپذیری دو مولفه عمده دارد که شامل نرخ انتشار (Diffusivity) و انحلال‌پذیری است. نرخ انتشار، نرخ انتقال یک ماده شیمیایی از یک مانع است. انحلال‌پذیری مقدار ماده شیمیایی که یک مانع می‌تواند نگهداری کند. بنابراین نفوذپذیری مربوط به مقدار حجم زاید یک پلمیر و سازگاری ماده شیمیایی با ژئوممبران است. در واقع، نفوذپذیری مرتبط با این است که چه مقدار ماده شیمیایی می‌تواند توسط غشا جذب شود و سرعتی که ماده شیمیایی از مانع عبور می‌کند. بنابرین غلظت، دما و ضخامت ژئوممبران بر مقدار نفوذپذیری تاثیر می‌گذارد.

نکات اجرایی در استفاده از ژئوممبرین ها

1-جهت استفاده از ژئوممبرین ها در سطوح شیبدار و یا قائم و جاهایی که امکان لغزش و جود دارد از نوعی ژئوممبرین استفاده می شود که بر روی سطح ان برجستگی هایی به شکل میخ و جود دارد این میخچه ها در آستر زیر فرو رفتهدو مانع از لغزش لایه ژئوممبرین میزشود.

2-در هنگام نصب ژئوممبرین باید کاملا" توجه داشت که از هر گونه خراش بر سطح آن جلوگیری شود خراش های سطحی به شکل قابل توجهی موجب کاهش مقاومت می شوند.

3-ژئوممبرین بصورت لوله ای و تخته ای ذر بازار عرضه می شود . گاهی برای سطوح وسیع مجبور به چسباندن چند لایه ژئوممبرین می باشیم. برای چسباندن ژئوممبریندر خارج از کارخانه ودر محل کارگاه معمولا" از چسب های مخصوص استفاده می شود. گاهی نیز جهت چسباندن دو لایه ژئوممبرین از ماده حلالی که موجب حل شدن دو لایه مجاور در هم می شود استفاده می گردد.

ژئوممبران

. ژئو ممبرانها اساساً ورقه های نازک و نفوذ ناپذیری هستند که از مواد لاستیکی یا پلاستیکی ساخته میشوند و عمدتآً برای آستر کاری و پوشش تأ سیسات ذخیره مایعات و گازها به کار میروند.ژئوممبرین ها دسته ای از خانواده ژئوسنتیتیک ها هستند که به شکل قابل ملاحظه ای نفوذ ناپذیرند . ماده اصلی تشکیل دهنده ژئوممبرین ها پلیمرهای مصنوعی اند و مهمترین نقش آنها به عنوان ماده ای محافظ در برابر عبور سیالات می باشد.کاربرد وسیع ژئوممبرین ها وابسته به خواص فوق العاده آنها نسبت به وزنشان می باشد.از مشخصات بارز این عایقها می توان به مقاومتهای کششی ، پارگی ، سوراخ شدگی بسیار بالای آنها اشاره نمود.درصد ازدیاد طول این عایقها تا بیش از 7 برابر طول اولیه آنها می باشد. همچنین نفوذ ناپذیری ، انعطاف پذیری توام با مقاومت بالادربرابرپاره شدگی و سوراخ شدگی و تغییرات بالای دمای اطراف ، مقاومت در برا برمواد شیمیایی ، سبک بودن و نصب سریع آنها است. ژئوممبران دارای طبیعت پلیمری هستند و به این دلیل در مقایسه با خاکهای رسی و ژئو تکستایل ها نفوذ ناپذیر تر می باشند ، آزمایشهای عبور خاک آب ، ضریب نفوذ پذیری آنها m/s 15- 10*2.7 نشان داده است .

بعضی از کاربردهای ژئوممبراین در پرو ژه های عمرانی

ژئوممبران‌ها به‌عنوان یک عایق بسیار مقاوم و کمهزینه و دارای طول عمر زیاد، در بسیاری از صنایع کاربرد دارد. این عایقها در کانالها کاربردهای فراوانی دارند خصوصا" در کانالهایی که از خاکهای واگرا ، گچی ، تورمی ، رمبنده و... عبور مینماید و یا با مشکل آبندی روبرو باشند ، استفاده از این عایقها در مقابل liningبتنی میتواند بعنوان گزینه مناسبی مورد نظر قرارگیرد.، انعطاف پذیری بالای این عایقها ، اجرای آسان که پیشرفت نصب ان معادل 5000 m2 در روز ، عدم نیاز به نگهداری و تعمیرات در طول دوره کارکرد و نیز افزایش قابل توجه سرعت حرکت اب و دبی کانال بعلت تفاوت ضریب زبری بتن با HDPE و امکان استفاده از آنها به صورت روباز از جمله دلایل استقبال جهانی از آن در پروژه ها میباشد. که از آن جملهمی‌‌توان به موارد زیر اشاره نمود:

- از جمله مهمترین کاربردهای ژئوممبراین کاربرد به عنوان آستر و محافظ می باشد که عمدتا" در سطوح داخلی کانال ها ، مخازن و لوله های آبرسانی مورد استفاده قرار می گیرد.مقاومت بالای ژئوممبرین در برابر سایش مانع از سائیدنه شدن سطوح این تاسیسات می شود. همچنین می توان از تاثیرات منفی فاضلاب بر روی سطوح تاسیسات مربوطه با نصب لایه ژئوممبرین بر روی آنها جلوگیری نمود. جهت حفاظت سازه های بتنی ذر بربر حملات شیمیایی خورنده محیط اطراف نیز می توان از ژئوممبرین استفاده نمود

- جهت آبندی جدار تونل ها همواره از ترکیبی از ژئوممبرین و ژئوتکستایل که در واقع تشکیل یک ژئوکمپوزیت را می دهند استفاده می گردد. در این کاربرد یک لایه از ژئو تکستایل را جهت زهکشی آب به سطح تونل می چسبانند و سپس بر روی آن یک لایه ژئوممبرین راجهت جلوگیری از نفوذ آب قرار می دهند و سپس نمای بنای نهایی را اجرا می کنند.

- جهت کنترل خاک هایی که بر اثر رطوبت که براثر رطوبت متورم می شوند از ژئوممبرین با قدرت نفوذ ناپذیری بالا استفاده می شود

- در تاسیساتی که قدرت کنترل مطلوب آب را جهت جلوگیری از اتلاف آن را ندارند نیز از ژئوممبرین به عنوان لایه محافظ در برابر خروج آب استفاده می شود و به شکل قابل توجهی از هدر رفتن آب جلوگیری می شود.

- آب و فاضلاب: از ژئوممبران‌ها جهت ساختلاگون‌ها، کانال‌های آبرسانی، حوضچه‌ها و استخرها و دریاچه‌های مصنوعی استفادهمی‌‌شود. با توجه به اینکه ژئوممبران در تماس با خاک هستند، برحسب لزوم امکان ترکیبآنها با ژئوتکستایل و یا ژئوگریدها میسر است.

- ایزولاسیون سازه‌های زیرزمینی در برابر نفوذ آبهای سطحی و زیرزمینی: در اینخصوص می‌‌توان به ایزوله دیوارهای متروهای شهری و سازه‌های هیدرولیکی و غیره اشارهنمود.

- سایت دفن زباله شهری و صنعتی و خطرناک: با استفاده از ژئوممبرانمی‌‌توان مخازن کاملاً ایزوله از محیط اطراف، جهت دفن زباله‌های شهری و صنعتی ایجادنمود. ژئوممبران‌ها دارای انواع فراوانی، به لحاظ مقاومت در برابر مواد شیمیایی ومخرب هستند.

- سد سازی و پل سازی ،ساخت سیل بند ها و جلو گیری از فرسایش

- مقاوم سازی بستر رودخانه ها و زهکشی قائم و فیلتراسیون ،اجرا شیبهای خاکی و دیوارهای حائل

- تصفیه خانه ها و حوضچه های مصنوعی ، استخر ها و سازه های زیر زمینی

- دورلوله هایی که به دلایلی باید درون آب باشند وصدها کاربرددیگر درصنعت وکشاورزی وآبیاری وغیره دارد0

همچنین ازژئوممبران برای جداکننده بین موج شکنهای کنار دریاها ازساحل آن استفاده میشود( دربندرامام نیزبه همین دلیل جلوگیری ازنفوذ آب دریا به جاده های کنار ساحل ازژئوممبران استفاده شده است ) زیرا ژئوممبرانها مقاومت بسیارزیادی دربرابرفشاروپارگی دارند بطوری که میتوان درحین اجرای ژئوممبران ، باوسایل سنگین ازجمله بولدوزر روی آن تردد نمود.

1-انعطاف پذیر و غیر قابل نفوذ در برابر آب

2-حفظ خاصیت نفوذ ناپذیری در تمام طول عمر

3-امکان افزایش طول تا 7 برابر طول اولیه

4-مقاوم در برابر اشعه ماورای بنفش خورشید

5-گستره وسیع تحمل دمایی از 40- تا 70+ درجه سانتی گراد

6-عدم شرکت در واکنش های شیمیایی به علت دارا بودن آنتی اکسیدان

7-مقاوم در برابر انواع مواد شیمیایی نظیر اسیدها ،بازها و نمک ها

8-مقاوم در برابر عوامل محیطی و بیولوژیکی نظیر رویش نی ،علف هرز ،جانوران جونده ،باکتری ها و جلبک ها

* یک سوم هزینه بتن

* یک سوم زمان ساخت نسبت به بتن

* نصب هر هزار متر در 48 ساعت

* ده سال گارانتی

* احداث استخرهای ذخیره آب جهت کشاورزی

* پوشش کانالها و نهرهای آبیاری و آبرسانی

* مخازن دفع زبالهای شهری ،صنعتی و بیمارستانی

* پوشش حوضچه های تصفیه آب و فاضلاب شهری و صنعتی

* پوشش لوله و تونلهای بتنی

* ایزولاسیون منابع زیر زمینی و غیره

 

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))