کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

تاثیر ترک های بتن بر روی تهاجم کلراید


معادلات انتشار فوق مبتنی بر این فرض است که می توان بتن را به صورت یک محیط شبه همگن در نظر گرفت . بنابراین می توان گفت که معادلات انتشار نمی توانند مستقیما تهاجم کلراید به داخل بتن از طریق ترک ها را مستقیما تحت پوشش قرار دهند . با این وجود ، اگر فرض کنیم که سطوح جانبی ترک ها به منزله سطوحی از بتن هستند که یون کلراید می تواند از طریق آنها به داخل بتن نفوذ کند ، آنگاه این امکان ، اگر چه با مشکل ، فراهم خواهد شد که بتوانیم تاثیر ترک ها را بر روی تهاجم کلراید به داخل بتن تعیین کنیم.

 

شرایط اولیه و مرزی

برای حل قانون دوم انتشار فیک باید شرایط اولیه و مرزی را بدانیم . بسته به میزان آگاهی ما در مورد این شرایط ، مناسب خواهد بود که برخی از حالتهای خاص را تعریف کنیم .

شرایط اولیه عبارت است از غلظت کلراید بتن در هنگام شروع تهاجم کلراید به آن که در اینجا فرض می کنیم  ثابت است.

 

سازه های بتن مسلح قدیمی

در یک بتن نسبتا قدیمی ( مثلا با قدمت تقریبا بیش از 20 سال ) می توان روند انتشار کلراید به داخل آن را ثابت فرض کرد ، یعنی D=  ضمنا ، میزان کلراید در سطحی ازبتن که در معرض کلراید قرار دارد ، یعنی  را می توان در حد یک میزان ثابت  تثبیت کرد .این امر منجر به آن می شود که معادله انتشار صورتی ساده به خود بگیرد و شرایط اولیه و مرزی نیز ساده شده و به صورت  ثابت ( یعنی با توزیع یکسان ) و  درآیند.

 

تعیین پارامترهای کلراید

 

 

هنگامی که در مورد قابلیت انتشار کلراید بحث می شود معمولا تهاجم کلراید را مد نظر قرار می دهند و پارامترهای دخیل در آن را به عنوان مقادیری ثابت در نظر گرفته و آنها را بر این اساس تعیین می کنند . قابلیت انتشار کلراید در داخل بتن را در دو مورد تعیین می کنیم:

الف ) تعیین پارامترهای کلراید در آزمونه های آزمایشگاهی که تحت شرایط مشخص تهاجم کلراید ( مثلا شرایط مذکور در استاندارد NT Build , Nordtest , 1996a ) قرار گرفته اند .

ب ) تعیین پارامترهای کلراید سازه های بتن مسلح (مثلا سازه های بتن مسلح دریایی ) یا آزمونه های بتنی که مثلا در یک ایستگاه تحقیقاتی دریایی تحت شرایط تهاجم کلراید ناشی از محیط قرار گرفته اند .

هنگام به دست آوردن یک پروفایل کلراید ، هیچگونه اطلاعاتی در مورد شرایط اولیه مرزی و فیزیکی نداریم . بنابراین برای آنکه تا آنجا که ممکن باشد مسئله را ساده کنیم ، فرض می کنیم در خلال تمامی دوره قرار گیری بتن در معرض کلراید ، پارامترهای کلراید ثابت باقی می مانند. با این وجود ، باید اذعان داشت که این امر صحیح نیست . همچنین از آنجا که فقط یک پروفایل تغییرات کلراید نسبت به زمان داریم ، لذا هیچگونه اطلاعاتی در مورد این شرایط در اختیار نداریم.

در یک تحقیق بر روی نمونه هایی از یک نوع بتن که در شرایط محیطی یکسانی قرار گرفته بودند آزمایشهایی انجام شد و پروفیل های کلراید آنها در زمانهای مختلف تعیین شد . تا که واکا و همکاری وی در سال 1998 این پروفیل ها را بررسی کرده و نشان دادند که مقدار ضریب انتشار کلراید بتن بدست آمده ،  ، به زمان بستگی دارد . مقدار ضریب به دست آمده انتشار کلراید در بتن به عنوان مقدار ثابت ضریب انتشار تعریف می شود . این امر موجب تعیین مقدار اندازه گیری شده تهاجم کلراید ( برای یک مقدار ثابت کلراید سطحی  ) می شود .

تاکه واکا و همکاران وی در سال 1988 ، پیشنهاد کردند که برای مدل کردن ضریب انتشار به دست آمده ، ازیک تابع توانی استفاده شود . بعدا مانگات و همکارانش در سال 1994 و ماگه و همکارانش در سال 1993 ، و برخی دیگر از پژوهشگران ، وابستگی به صورت رابطه فوق را اثبات کردند.

افزایش تعداد مشاهدات و بررسی انجام شده بر روی سازه های بتن مسلح دریایی ، بوسژه در کشور ژاپن ، نشان داد که میزان کلراید سطحی به دست آمده باید تابع زمان باشد . اوجی و همکاران وی در سال 1990 بر اساس مشاهداتشان پیشنهاد کردند که  متناسب با جذر زمان مدل شود . این نکته می تواند به عنوان یک دستاورد مطلوب تلقی شود زیرا مطابق با آنچه که کرنک در سال 1956 در کتا خویش ارائه کرده است در این حالت قانون دوم انتشار فیک به سهولت حل شده و جواب ساده تری خواهد داشت . برای اولین بار ، پورویس و همکاران وی در سال 1994 ، و نیز گاوتفال و همکارانش در سال 1994 از این راه حل استفاده کردند.

بعدا در سال 1995 سوامی و همکارانش بر اساس تحقیقات جامعی که انجام داده بودند نشان دادند که  همیشه متناسب با جذر زمان افزایش نمی یابد . با این وجود آنان نشان دادند که می توان فرض کرد که  به صورت یک تابع توانی از زمان افزایش می یابد.

در آن زمان این امکان وجود نداشت که تاثیر پارامترهایی نظیر نسبت آب به سیمان ، نوع سیمان و سایر مواد چسباننده و سیمانی نظیر خاکستر بادی ، دوده سیلیسی و سرباره کوره آهنگدازی را تعیین کنند ، ولی مطالعات آزمایشگاهی ، از جمله پژوهشهای بایفورس در سال 1987 نشان داده اند که پارامترهای مزبور بر این امر تاثیر دارد. بسیاری از بررسی ها و تحقیقات کارگاهی در آن زمان ، از جمله در اسکاندیناوی ، نیز نشان داده اند که تاثیر این پارامترها بسیار زیاد است.

در آن زمان اگر میزان کلراید سطحی به صورت تابعی توانی از زمان در نظر گرفته می شد راه حلی کلی برای قانون دوم انتشار فیک وجود نداشت . با این وجود ، می یلبرو در مورد افزاشی میزان کلراید سطحی با گذشت زمان ، تردیدهایی وجود دارد.

 

 پیوند کلراید

کلرایدی که از طریق منافذ خمیر سیمان ، در داخل بتن انتشار می یابد ، در تماس با ترکیبات شیمیایی مختلفی قرار می گیرد . بنابراین ، این امکان وجود دارد که کلراید ، چه به صورت فیزیکی با ژل سیمانی و چه به صورت شیمیایی ، با خمیر سیمان پیوند بیابد . از آنجا که فقط این کلراید آزاد است که در داخل بتن انتشار می یابد ، لذا پیوند کلراید برای تعیین پروفیل کلراید دارای اهمیت زیادی است . رابطه بین کلرایدهای آزاد پیوند یافته به نوع ماده سیمانی بتن بستپی دارد و لذا باید آن را به صورت تجربی تعیین کرد.

در صورتی که برخی از پارامترهای مایع منفذی ، نظیر میزان pH ، دما و فشار آن تغییر کنند ، ممکن است بعضی از کلراید های پیوند یافته آزاد شوند . در نتیجه ، بسیار مناسب است که کلراید بتن را به صورت کلراید محلول در اسید تعیین کنیم.

ما در تمامی این تحقیق ، کلراید بتن را به صورت کلراید محلول در اسید و بر حسب درصدی از بتن یا ماده چسباننده آن در نظر می گیریم.

 

 

در عکس بالا شاهد استفاده از پوشش ضد اسید در سازه های دریایی هستیم جهت جلوگیری از خوردگی

خوردگی آرماتور فولادی در بتن

دوام بتن یکی از مهمترین مخصه های آن است که باید در هنگام طراحی و ساخت بتن ، تمهیدات لازمی برای تامین آن در نظر گرفته شود . علاوه بر آن ، می باید با روشهای مناسب علمی ، طول عمر خدمت دهی سازه های مختلف بتنی ، نحوه رفتار آن ها در شرایط مختلف محیطی ، وجود خوردگی ها و تخریب های احتمالی و علل ان ها و نحوه تعمیر و زمان انجام آنها را مشخص سازیم .

 

خوردگی فولاد مدفون در داخل بتن بر اثر نفوذ یون کلراید و پیامد های آن ، یکی از مهمترین انواع خرابی های سازه های بتن مسلح است که بویژه به دلیل کثرت میزان آن ، هر ساله خسارات بسیار زیادی را بر ابنیه بتنی وارد می آورد . علی رغم تحقیقات فراوانی که در این زمینه صورت گرفته است ، معهذا به دلیل اهمیت فنی و اقتصادی موضوع ، هنوز هم بخش عمده ای از تحقیقات مربوط به دوام بتن در این زمینه انجام می گیرد .

 

این موضوع در کشور ما نیز ، به دلیل جدی بودن مسئله ، بویژه در مناطق حاشیه سواحل و جزایر خلیج فارس و دریای عمان از اهمیت زیادی برخوردار است .

 

سازه و کارخوردگی فولاد بر اثر تهاجم کلراید

در این قسمت ، ابتدا در مورد ساز و کار خوردگی فولاد و سپس در مورد نقش کلراید بر آن بحث می کنیم . در واقع می توان گفت که سازه های بتن مسلح از نقطه نظر خوردگی ، یک نوع سازه بسیار مناسب به شمار می آیند ، زیرا محیط قلیایی بتن موجب حفاظت از لایه غیر فعال (Passive ) فولاد می شود. لایه مذکور آرماتور را در برابر خوردگی محافظت کرده و به آرماتور برسد ، آنگاه لایه مزیبور صدمه خورده و یا از بین می رود و لذا فولاد مستعد خوردگی می شود .

یون کلراید اساسا بر روی میلگرد فولادی موجود در بتن تاثیر می گذارد . این تاثیر به صورت خوردگی فولاد است . خوردگی فولاد د اصل یک نوع واکنش الکترو شیمیایی است. مکانیسم خوردگی فولاد در حالت کلی ناشی یونیزه شدن محیط و تشکیل پیل شمیایی است. البته ، تمامی واکنش های شمیایی اساساً ماهیت الکتریکی دارند ، زیرا الکترون ها در تمامی انواع پیوندهای شمیایی یک نوع پدیده اکسایش – کاهش (یا اکسیداسیون و احیاء) است. د اینگونه واکنش ها ، دو الکترود فلزی ، موسوم به آند و کاتد ، وجود دارند که اختلاف پتانسیلی بین آنها  برقرار ست . اگر این دو الکترود در داخل یک محلول الکترولیت قرار گیرند ، رسانایی الکتریکی باعث آن می شود که یک جریان الکترولیتی بین آند وکاتد برقرار شود. روند خوردگی معمولی فولاد، که به زنگ زدن آن می انجامد، بر تشکیل پیل خوردگی است. شرایط بروز این امر، وجود سه عامل آهن، آب و اکسیژن است.

انجام واکنش خوردگی نیازمند وجود آب و اکسیژن است. نتیجه این عمل، ایجاد ناحیه سلول یا پیل ولتایی کوچک است، الکترون های تولید شده در ناحیه آندی، به سوی ناحیه کاتدی حرک می کنند. کاتیون ها ، یعنی یونهای Fe++ ، که در آند تولید شده اند از طریق الکترولیت به سوی  کاتد می روند. آنیون ها ، یعنی OH- که در کاتد تولید شده اند به طرف آند حرکت می کنند.

این یون ها، در جایی، میان این دو ناحیهبه هم می رسند و 2(OH) Fe را بوجود می آورند. این هیدروکسید، نیز  خود در حضو اکسیژن و رطوبت پایدار نیست و به 3(OH) Feتبدیل می شود که دراصل همان اکسید آبپوشیده یا زنگ آهن، O 2H x و O3 Fe2است.

در شکل 2-2-1، فرایند خوردگی فولاد در داخل بتن، نشان داده شده است.

 

 

نکته شایان ذکر این است که برای تشکیل پیل و انجام واکنش فوق ، به دو فلز به عنوان الکترود ، که با هم اهتلاف پتانسیل دارند ، نیاز داریم . در حالتهای خوردگی فولاد ، معمولا نقاط مختلف یک قطعه فلز به عنوان دو الکترود مزبور  یعنی کاتد و آند ، رفتار می کنند . علل وجود اختلاف پتانسیل بین نقاط مختلف یک قطعه فلز را می توانیم به صورت زیر بیان کنیم :

-         غیر یکنواختی ویژگیهای فلزی نظیر غیر یکنواختی سطح فلز ، غیر یکنواختی لایه های حفاظتی و یکسان نبودن کرنش ها و تنش های داخلی .

-         غیر یکنواختی مایع الکترولیت اطراف فولاد نظیر یکنواخت نبودن غلظت ها و یونهای مختلف .

-         غیر یکنواختی شرایط فیزیکی نظیر دما و میدان الکتریکی .

لذا بر اثر این شرایط ، قسمتی از فلز که نقش آند را بازی می کند ، بر اثر واکنش الکترو شیمیایی خورده می شود . در شکلهای 2-2-2 و 2-2-3 ، فرآیند خوردگی فولاد به صورت شماتیک نشان داده شده است . 

 

 

شرایط مورد نیاز برای انجام یا تسریع واکنش خوردگی فولاد

برای انجام فعل و انفعالات خوردگی فولاد، حتماً باید مطابق شکل 2-2-4 سه عامل آهن، اکسیژن، و الکترولیت آب حضور داشته باشند.

 

 

 

همانگونه که مشاهده میکنیم، آب باید حتماً به صورت الکترولیت باشد و لزمه این امر وجود املاح یا گازها در آن است. آب مقطر الکترولیت نیست، لذا فولاد در آب مقطر زنگ نمی زند.

آهن د هوا نیز زنگ می زند و این امر ناشی از وجودO2و بخار آب در هوا است و در نتیجه ، پیل در هوا تشکیل می شود، البته بخار آب موجود در هوا نیز معمولاً املاح ندارد و مانند آب مقطر است، ولی گرد و غبار و کثیفی های روی آهن و نیز گازهای موجود در هوا، نظیر co , so آب را الکنرولیت می کنند و موجب فراهم آوردن شرایط زنگ زدگی فولاد می شوند . به همین دلیل کثیفی فولاد و نیز آلودگی هوا موجب تسریع فرآیند خوردگی می شوند . وجود املاح گوناگون در خام و بتن موجب تسریع خوردگی فولاد داخل آنان می شود .

از سوی دیگر ، فرآیند خوردگی نیازمند وجود اکسیژن به عنوان قطبی کننده است . لرا خوردگی فولاد مستغرق در آب ، که حاوی اکسیژن ، به عنوان قطبی کننده است . لدا خوردگی فولادهای مستعرق در آب ،که حاوی اکسیژن بسیار کمی است ، معمولا بسیار ناچیز است .

نکته شایان ذکر دیگر این است که هر چه اختلاف پتانسیل بین ند و ماتد بیشتر باشد . شدت خوردگی نیز بیشتر است .

هر گاه فاصله بین آند و کاتد بسیار کم باشد ، میکرو پیل و هرگاه این فاصله زیاد باشد ماکرو پیل تشکیل می شود . در شکل 2_2_5 ،میکرو پیل و ماکرو پیل به صورت شماتیک نشان داده شده اند .

خوردگی یک تکدمیلگرد داخل بتن نمونه ای از میکرو پیل و خوردگی دو میلگرد طولی ، که با خاموت به هم متصل شده اند ، نمونه ای از ماکرو پیل است . در ماکرو پیل اختلاف پتانسیل بین آند و کاتد بیشتر است .

ناخالصی موجود در آهن نیز سبب پیشترفت زنگ زدگی می شوند . آهن بسیار خالص به سرعت زنگ نمی زند ، بعصی از انواع ناخالصی ها ، کشیدگی ها و نقصهای بلوری موجود در آهن ، الکترون ها را جذب کرده و آنها را از ناحیه هایی که موقعیت آندی پیدا می کنند دور می کنند .

 

می شود . افزایش حجم ناشی از زنگ زدن ، موجب تضعیف مقطع و حتی خرابی آن و نیز گسترش و تسریع پدیده خوردگی می شود . زیرا بر اثر افزایش حجم مزبور ، ترک هایی ، عمدتا در امتداد طول فولاد ، ایجاد شده که به تدریج و با گسترش خوردگی ، عرض ترک ها بیشتر شده و ترک ها بازتر می شوند . این امر ، علاوه بر وارد آوردن صدمه به بتن و تخریب آن ، که موجب تضعیف مقطع می شود ، باعث آن می گردد که محیط خورنده و مهاجم از طریق ترک ها و درزهای ایجاد شده بهتر و سریعتر بتوانند وارد محیط شده و لذا خوردگی فولاد از این طریق نیز تسریع شود .

 

نقش یون کلراید در فرآیند زنگ زدن فولاد

 کلر ، جزء هالوژنها است . هر اتم هالوژن ، از گاز نجیبی که پس از آن در جدول تناوبی عناصر قرار گرفته است یک الکترون کمتر دارد . بنابراین ، هر اتم هالوژن تمایل زیادی دارد که با تشکیل یک یون با یک بار منفی و یا یک پیوند کووالانسی ، آرایش الکترونی یک گاز نجیب را به خود بگیرد . هر یک از هالوژن ها واکنش پذیرترین نافلز در دوره خود در جدول تناوبی است و کلر ، پس از فلوئور ، واکنش پذیرترین نافلزات است . الکترونگاتیویته کلر نیز پس از فاوئور ، بیش از هر عنصر دیگری است و لذا یکی از قوی ترین عوامل اکسید کننده ای است که تا کنون شناخته شده است . توانایی اکسید کنندگی هال.ژن ها و از جمله کلر را می توان در واکنش های جانشینی آن ها مشاهده کرد . کلر حتی می تواند جانشین هالوژن ها ی پتیین تر از خود ، برم و ید ، در نمکهای آن ها گردد.

نکته ای که باید متذکر گردیم این است که کلر اثر منفی و بدی بر روی بتن ساده ندارد و حتی به دلیل ترکیب کلر با  C A  موجود در بتن ، نمک نسبتا پایدار فریدل یا کلرو آلومینات کلسیم { C A CacI ( OH)  } تشکیل می شود که باعث افزایش تراکم بتن و ریزش شدن منافذ آن می شود . تاثیر منفی کلر در هنگامی است که بتن همراه با فولاد ، یعنی به صورت بتن مسلح باشد . زیرا به طوری که خواهیم گفت ، کلر موجب تسریع خوردگی فولاد می شود .

یون کلراید  C I  نیز همانند یون (  O H  ) ، البته با شدت بسیار بیشتر ، موجب واکنش الکترو شیمیایی می شود .

در شکل 2-2-6- ، فرآیند خوردگی فولاد داخل بتن بر اثر نفوذ یون کلراید نشان داده شده است .

از سوی دیگر ، همان گونه که گفتیم ، وجود قلیائیت زیاد محلول منفذی بتن باعث آن می شود که لایه اکسید غیر فعال واقع بر روی آرماتور ( به ویژه لایه مگنتیت  Fe O  و مگهمیت   ( Y-Fe o  به نحو مطلوبی محافظت بشود و از خوردگی بیشتر آن تا حد زیادی جلوگیری شود . تهاجم کلر باعث آن می شود که قلیائیت بتن کاهش یافته و با کم شدن  PH ، محیط به سمت اسیدی بودن میل کند و لذا لایه نازک اکسید محافظ فولاد ار بین رفته و روند زنگ زدگی تسریع شود . تهاجم اسید ها و کربناسیون بتن نیز تاثیر مشابهی را دارد .

شایان ذکر است که خوردگی فولاد بر اثر تهاجم یون کلراید به صورت حفره ای شدن است . مکانیسم خوردگی از نوع حفره ای آرماتور داخل بتن بر اثر تهاجم یون کلراید در شکل 2-2-7 نشان داده شده است .  

 

 

افزایش پایایی بتن

پایایی یا دوام بتن را می توان به صورت توانایی مقاومت بتن در برابر هوازدگی , حمله شیمیایی و سایش در ضمن حفظ خصوصیات مهندسی مورد نظر با حداقل افت جرم در محیط مهاجم تعریف کرد . نفوذپذیری سیمان به وسیله تخلخل موئینه خمیر کنترل می شود و با پیشرفت درجه هیدراسیون آن تغییر می کند . در یک خمیر سیمان تازه , نفوذپذیری به وسیله اندازه , شکل و غلظت ذارت اولیه سیمان کنترل می شود و با پیشرفت هیدراسیون , نفوذپذیری به سرعت کم می گردد و کاهش نفوذپذیری بتنباعث افزایش پایایی بتن می شود .

 

نفوذپذیری بتن بر پایایی آن تاثیر دارد . تاثیر سیمان پرتلند پوزولانی بر نفوذپذیری بتن در سنین اولیه چندادن محسوس نمی باشد , اما در سنین طولانی تر که بتن در مجاورت رطوبت نگهداری گردد دارای نفوذپذیری کمتر می شود . این امر به خاطر فعال شدن پوزولان در خمیر سیمان و ایجاد واکنش های پوزولانی در بستر زمان است که باعث افزایش نسبی مقاومت و کاهش تخلخل در خمیر سیمان می شود . همچنین سیمان پرتلند پوزولانی در درازمدت به خاطر واکنش بین پوزولان و Ca(OH) حاصل از هیدراسیون فازهای سیمان و تشکیل ماده چسبنده سیمانی (ژل سیمان) باعث نفوذپذیری کمتر خواهد بود .

 

قسمتی از نقش پوزولان ها در کاهش نفوذپذیری بتن را می توان به کاهش جداشدگی و آب انداختگی و کاهش نیاز به آب در بتن , نسبت داد . با استفاده از مواد پوزولانی که با حفظ کارآیی مقدار آب بتن را کاهش می دهند , می توان از نسبت آب به سیمان کمتر استفاده کرد که نسبت آب به سیمان هر چه کمتر باشد مقدار منافذ مویینه بتن کاهش یافته و در نتیجه نفوذپذیری بتن کاهش می یابد .

با عمل آوری کافی , خاکستر بادی , دوده سیلیس , متاکائولن , روباره آسیاب شده و پوزولان های طبیعی معمولا نفوذپذیری و جذب آب بتن را کاهش میدهند .

مواد پوزولانی , انبساط ناشی از واکنش های قلیایی سنگدانه را کاهش می دهند مثلا خاکستر بادی کم کلسیم گروه F انبساط ناشی از واکنش های قلیایی سنگدانه را در برخی موارد تا 70% کاهش می دهد. مواد پوزولانی برای بی اثر کردن واکنش شیمیایی قلیایی های موجود در بتن , سیلیکات کلسیم هیدراته اضافی تولید می کنند .

 

یکی از موارد عمده خرابی ها در بتن , ناشی از حملات سولفاتی است که با استفاده از افزودنی های بتن یا کاهنده های آب می توان آن تصحیح کرد(افزودنی های کربکسیلاتی یا نفتالینی) . حمله ی سولفات می تواند به شکل انبساط بتن ظاهر شود . وقتی که بتن ترک میخورد , تراوایی آن افزایش می یابد و آب مهاجم راحت تر به داخل آن نفوذ می کند و بنابراین آسیب دیدگی تسریع می شود . دوم اینکه حمله سولفاتی می تواند به صورت کاهش مستمر مقاومت و کاهش مستمر جرم ناشی از آسیب دیدن چسبندگی بین محصولات حاصل از هیدراسیون سیمان, انجام گیرد . استفاده از پوزولان های طبیعی همراه با سیمان پرتلند حملات مخرب ناشی از آب دریا , خاک های سولفات دار و آب های اسیدی را کاهش می دهد . این بهبود نسبی برای بتن های کم عیار , بیشتر می باشد . البته استفاده از یک پوزولان به همراه سیمان پرتلند ضد سولفات الزاما مقاومت در برابر حملات سولفاتی را افزایش نمی دهد . حتی اگر آلومین فعال در پوزولان موجود باشد , ممکن است سبب کاهش مقاومت در برابر حملات سولفاتی گردد که می توان با استفاده از ملات های آماده تعمیری(ملات ترمیمی بتن)مه نسیت به ترک های موجود تعیین می شوند استفاده نمود.