کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

استفاده از میکروسیلیس در بتن


تحقیقات اخیر نشان می دهد که میکروسیلیس تاثیر بسیاری در کنترل انبساط بتن ناشی از ASR دارد و با میزان استفاده 10% یا کمتر استفاده از آن، آسیب های انبساط در منشور سنگدانه های واکنش زا از بین

می رود. این اتفاق به آسانی در محلول های قلیایی، که در آنها از ترکیب سیمان با میکروسیلیس استفاده شده است، مشاهده می شود.

گفتنی است میزان پایین بازدهی میکروسیلیس در کنترل انبساط در دراز مدت به وسیله تعدادی از کاربرها مورد سوال واقع شده است. تحقیقات نشان داده است که 10% میکروسیلیس واکنش ها را به تعویق

می اندازد یا کندتر می کند، اما این واکنش ها را کاملاً در سنگدانه های اپالین از بین نمی برد. مقدار 15% جایگزینیمیکروسیلیس نیز ممکن است برای استفاده با اپال کافی نباشد. کار با کریستوبالیت همچنین نشان می دهد که اساساً مقداری بیشتر از 10% میکروسیلیس، برای از بین رفتن دراز مدت انبساط نیاز است. خاطر نشان می شود، نظر به انجام بعضی مطالعات، برخی از سنگدانه ها ممکن است در بتن حاوی انواع سیلیس های با واکنش زایی کم، مناسب نباشد.

دیگر بررسی ها در کانادا برروی سنگدانه های واکنش زا حاوی موارد اثبات شده بیشتری درخصوص پتانسیل انبساط های زیانآور، در بتن با 10% میکروسیلیس است. میکروسیلیس ممکن است شرایطی را برای عقب انداختن واکنش های آسیب زننده برای مدت 2 سال یا بیشتر در منشورهای بتنی نگهداری شده در 38 درجه سانتی گراد، مهیا کند، اما دلایلی ارائه شده است که نهایتاً برای تعدادی از سنگدانه ها وقتی با سیمان های با قلیاییت بالا استفاده می شوند، انبساط ها از حد 04/0% تجاوز می کند.

در این زمینه مطالعات گسترده ای با نتایج متفاوت و متغیر به وسیله بررسی کنندگان بسیاری، حاصل شده است. منابع این تفاوت ها شامل موارد زیر است :

خصوصیات میکروسیلیس مورد استفاده و اثر بخشی حاصل از پراکندگی در بتن
واکنش طبیعی سنگدانه ها
مقدار قلیاییت سیمان پرتلند
نسبت بندی های مخلوط
انواع نمونه ها (ابعاد،بتن،یا ملات)
شرایط نگهداری ها
مدت زمان آزمایش کردن
با تمام این تفاوت ها به طور کلی می توان تجمیع نظرات محققان را به صورت زیر بیان کرد :

اگر چه رفتارهای نامطلوبی در برخی مطالعات با میزان جایگزینی 5% میکروسیلیس مشاهده شده است، اما کاهش انبساط با افزایش مقدار میکروسیلیس حاصل می شود.
اطلاعات نامطلوبی درخصوص تاثیر ترکیب میکروسیلیس ارزیابی شده موجود است. میکروسیلیس با مقدار کم SiO2 یا به طور غیرمعمولی با میزان Na2Oe بالا، نمی تواند تاثیر چشمگیری در کنترل انبساط داشته باشد.
در مقدار معمول میکروسیلیس (5 تا 10%)، انبساط با افزایش مقدار قلیاییت سیمان یا کل مقدار قلیاییت بتن افزایش می یابد.
اثر میکروسیلیس با واکنش طبیعی سنگدانه ها حاصل می شود و توانایی کم میکروسیلیس در کنترل انبساط اپال وکریستوبالیت با واکنش زایی بالا پایدار می شود.
میکروسیلیس سرعت انبساط را کندتر می کند، و مطمئناً تاثیر بیشتری در درصد جایگزینی دارد.
در صنعت ساخت و ساز ایسلند، میکروسیلیس با سیمان قلیایی بالا (تقریباً 5/1% Na2Oe) استفاده می شود و سنگدانههای با واکنش زایی بالا، در مسکن سازی های بتنی از سال 1979 به کار گرفته شده است. این نکته حائز اهمیت است که این روزها هیچ گزارشی مبنی بر وجود ASR در این بتن ها وجود ندارد.

در افریقای جنوبی حداقل جایگزینی میزان 15% میکروسیلیس برای کنترل ASR توصیه شده است. در درصدهای جایگزینی کمتر، مقدار قلیاییت فعال مخلوط سیمان- میکروسیلیس باید برای سنگدانه های ویژه، قبل از اینکه مورد استفاده قرار گیرد، کنترل شود. فعال بودن قلیایی ها با میکروسیلیس با تعیین انجام آزمون ASTM C 311 برای قلیایی های موجود یا محاسبه یا فرض 30% از کل قلیایی ها فعال هستند، تعیین می شود.

در CSA A23.2-27A، حداقل میزان میکروسیلیس مورد نیاز برای کنترل انبساط واکنش پذیری سنگدانه ها به موارد متععدی بستگی دارد. مقدار قلیایی ها در بتن به مدت زمان بهره برداری، اندازه اعضای سازه ای و شرایط محیطی بستگی دارد.میکروسیلیس با مقدار قلیاییت متجاوز از 1% Na2Oe، نمی تواند مورد استفاده قرار بگیرد، مگر اینکه درجه تاثیر میکروسیلیس بر سنگدانه های پای کار توسط آزمون، مطابق با CSA A23.2-28A به اثبات رسیده باشد.

 استفاده از پوزولان های طبیعی

واژه پوزولان ها، پوشش دهنده انواع متفاوت سنگ دانه های طبیعی سیلیسی واکنش دار، از خاکسترهای آتشفشانی و مواد حاصل از چرخه موادی مثل سیلیس (رس یا سنگ رسی خشک شده یا متاکائولین) است. بعضی سنگدانه های واکنش دار در تولید مواد برای استفاده به صورت افزودنی پوزولانی در بتن مناسب اند. استفاده از پوزولان ها برای بتن در ACI 232.1R تشریح شده است. خصوصیات شیمیایی و فیزیکی آنها نیز در ASTM C 618 مشخص شده است.

در اولین نشریات و مقالاتی که در مورد ASR، گزارش شده است، انبساط ناشی از واکنش باید با استفاده از سیمانپوزولانی حاوی ریزدانه های سنگ رسی یا جایگزینی 25 درصد سیمان با قلیاییت بالا با 25% پومیس، کاهش داده شود. جایگزینی پومیس تاثیر بیشتری برکاهش انبساط نسبت به مقدار معادل آن با ماسه اتاوا دارد. مواد پوزولانی متعددی مورد آزمایش قرار گرفته است و تاثیر همه آنها در کنترل انبساط ASR که در آن مقدار مناسبی از افزودنی ها مورد استفاده بودند، به دست آمده است. پوزولان های طبیعی به طور گسترده ای با هم مخلوط می شوند و میزان مورد نیاز برای از بین بردن انبساط باید توسط آزمون ASTM C 441 یا ترجیحاً در بتن با سنگدانه های پای کار (ASTM C 1293) تعیین شود.

 آزمون هایی برای ارزیابی تاثیر پوزولان ها و سرباره ها بر روی ASR

آزمون منشور ملات شیشه نشکن ASTM C 441 روش آزمودنی است که معمولاً برای ارزیابی تاثیر پوزولان ها و سربارهدر کنترل انبساط ناشی از ASR استفاده می شود. آزمون های اخیر با U.S.A.C.E و U.S.B.R نشان داده است که خاکستر بادی و سرباره تاثیر کمتری نسبت به پوزولان های طبیعی با سیلیس بالا دارند و استفاده از نسبت بندی متجاوز از 40%، بنا به تعریف مطرح شده در ASTM C 441 تاثیر می گذارد. پس از آن بسیاری از کاربرها از این آزمایش برای ارزیابی عملکرد پوزولان ها و سرباره استفاده کردند.

در ویرایش اخیر آزمون ASTM C 441، انبساط منشور ملات (نگهداره شده در دمای 38 درجه) ساخته شده با سیمان با قلیاییت بالا (95/0 تا 05/1% Na2Oe) و 25% خاکستر بادی (براساس حجم) یا 50% سرباره با کنترل منشورها (تنها سیمان) مقایسه و کاهش درصد پوزولان و سرباره محاسبه شده است. به عنوان گزینه ای دیگر می توان مصالح و میزان درصد مواد جایگزینی که به صورت واقعی در پروژه استفاده شده است را مورد استفاده قرار داد. در ASTM C 618 (مشخصات برای پوزولان طبیعی و خاکستر بادی) ملزم می کند که انبساط مخلوط آزمون (صرف نظر از مقدار قلیاییت سیمان مورد استفاده) نباید بیشتر از انبساط با قلیایی کم باشد. در ASTM C 989 (مشخصات فنی برای سرباره) بتنحاوی ملزومات ASR نیست، اما پیشنهاداتی در پیوست غیر الزامی آن، برای استفاده از ASTM C 441، انبساط در 14 روز به وسیله 75% کنترل یا نگهداشتن پایین تر از 020/0% وقتی با مواد پروژه استفاده می شود، کاهش می یابد. ویرایش های اخخیر این آزمون ملزم می کند سرباره جایگزین 20 درصد (براساس حجم)، مورد استفاده قرار گیرد. معیارهای مورد استفاده برای ارزیابی پوزولان ها یا سرباره در این آزمون، به دلیل محافظه کارانه بودن آن، همواره مورد نقد بعضی از کاربرهاست.

پتانسیل میکروسیلیس برای کاهش انبساط ASR آشکار است، البته اگر به میزان مشخص شده 25% حجمی در آزمون های مورد استفاده ASTM C 441 جایگزین شود. اغلب جمع شدگی ها بعد از 14 روز از زمان آزمایش مشاهده می شود. تحقیقات دیگری، مقادیر متفاوتی از جایگزینی را مورد استفاده قرار دادند و پی بردند که مقدار 10% در کاهش انبساط 14 روزه بیشتر از 75% در کنترل انبساط موثر است.

دیگر کاربردها بر مطابقت استفاده از 10% و حتی کمتر، از میکروسیلیس با این معیارها تاکید دارند. مطالعات نشان می دهد انبساط نمونه های میکروسیلیس بعد از 14 روز ادامه می یابد و پرسش هایی را برای اعتماد به آزمون های با زمان کم مطرح می کند.

 یکی از مطمئن ترین روش ها برای ارزیابی تاثیر پوزولان ها و سرباره برروی انبساط حاصل از ASR،‌ به وسیله انجام آزمون های آزمایشگاهی بدون شک آزمون انبساط مخلوط های بتنی برپایه شرایط مشابه آزمون ASTM C 1293 است. متاسفانه، این آزمون ممکن است تا 2 سال برای حصول اطلاعات رضایت بخش برای خاکستر بادی و سرباره طول بکشد و حتی دوره طولانی تری برای میکروسیلیس نیاز است. ارتباط و همبستگی مستدلی در مقایسه نتایج آزمون منشور بتنی(حد انبساط 2 ساله 04/0% در

ASTM C 1293) و در آزمون منشور ملات تسریع شده (حد انبساط 14 روزه 10/0% در

 ASTM C 1567) وجود دارد. بسیاری از سازمان ها، راهنماها و پیش نویس ها برنامه های خود را برای تعیین کنترل ASR، پوزولان ها، سرباره یا ترکیب این مواد توسعه داده اند. راهنماها استفاده از ترکیب ازمون های منشور ملات ومنشور بتنی را برای ارزیابی پتانسیل واکنش زایی مخلوط های بتنی مطرح می کنند.

10-11 استفاده از افزودنی های شیمیایی

استفاده از افزودنی های شیمیایی برای جلوگیری از ASR در صنعت ساخت و ساز چندان گسترده نیست. این مواد شامل نمک های لیتیم و دیگر نمک ها شامل باریم و غیره است.

 

 نمک های لیتیم

تحقیقات نشان می دهد که توانایی ترکیبات لیتیم (Li2CO3 , LiF , LiCI) برای کنترل ASR زیاد است اما ذکر این نکته مهم است که استفاده از لیتیم برای ساخت و سازهای صنعتی و با توجه به هزینه نسبتاً بالای آن قابل قبول نیست. بسیاری از تحقیقات نشان می دهد که استفاده از لیتیم در سال های اخیر مورد توجه بیشتری قرار گرفته است.

میزان لیتیم مورد نیاز برای کنترل انبساط زیان آور بستگی به مقدار قلیاییت بتن و واکنش های طبیعی سنگدانه هادارد. به طور کلی تحقیقات ثابت می کند که نسبت هایی در محدوده 6/0 تا 1 Li/(Na+K) عملکرد مناسبی در خنثی کردن انبساط ها از خود نشان می دهد. به هر حال باید توجه کرد که لیتیم ناکافی می تواند باعث افزایش انبساط و سودمندی لیتیم شود و به واکنش طبیعی سنگدانه ها بستگی دارد. چندین سند (براساس AASHTO)‌ برای راهنمایی استفاده ازافزودنی لیتیم برای کنترل ASR ارائه می دهند.

 دیگر افزودنی های شیمیایی

ترکیبات شیمیایی دیگری در کاهش انبساط ناشی از ASR پیدا شده است. اینها شامل موارد گوناگونی از نمک های باریم، سیلیکوفلوراید سدیم و آلکیل الکوکسی سیلان هستند که مورد مطالعه قرار گرفته اند، اما نتایج مطمئنی به دست نداده است. علاوه بر این تحقیقات تکمیلی برای اثبات تاثیر افزودنی های مختلف برای کنترل ASR به آزمایشات بیشتری نیاز دارد.


نحوه کاهش زیان های بتن برای محیط زیست

بتن ماده‌ای است که تولید آن تاثیر قابل توجه و چشمگیری بر روی محیط زیست می‌گذارد. به طور مثال، گزارش شده است که سالانه 1٫6 میلیارد تن بتن تولید می‌شود که این مقدار تولید، باعث به وجود آمدن 7 درصد از دی‌اکسید کربن تولید شده به صورت سالانه می‌گردد. در کنار این، تولید بتن منابع طبیعی را تخلیه می‌کند و زباله‌هایی تولید می‌کند که به زیان محیط زیست است.

بتن از سه ماده‌ی اصلی یعنی آب، سیمان و سنگدانه تشکیل شده است. تولید بتن نیاز به انرژی زیادی دارد و این موضوع باعث تخلیه‌ی مقدار زیادی گازهای گلخانه‌ای در جو می‌شود. به علاوه برخی افزودنی‌هایی که از آن‌ها در بتناستفاده می‌شود، در بلند مدت اثرات زیان‌باری برای محیط زیست ما دارند.

ایجاد تغییرات در سنگدانه و آب مورد استفاده می‌تواند منجر به کاهش استفاده از منابع طبیعی و کاهش آلودگی منابع آبی بشود.

یکی دیگر از اشکالات بتن دوام نسبتاً پایین آن است. در حال حاضر سازه‌ها برای عمری حدود 50 سال طراحی می‌شوند. اگر دوام بتن‌ها بالاتر برود، تاثیر آن بر محیط زیست کاهش خواهد یافت. راه‌های زیاد دیگری نیز وجود دارد که می‌توان با استفاده از آن‌ها، زیان استفاده از بتن برای طبیعت را به حداقل رساند. در این نوشتار به بررسی این راه‌ها پرداخته‌ایم.

 

 

نمای زیبای طبیعت به علت برداشت بیش از حد مواد معدنی به این صورت درآمده است.

 

روش‌های زیادی برای کاهش زیان تولید بتن در طبیعت وجود دارد که به طور کلی می‌توان آن‌ها را به چهار دسته‌ی زیر تقسیم کرد :

جایگزینی سیمان
جایگزینی سنگدانه‌ها
جایگزینی آب
افزایش دوام بتن
جایگزینی سیمان برای کاهش زیان بتن در طبیعت

جایگزین سیمان اولین و مهم‌ترین قدم در کاهش مصرف انرژی و تولید گازهای گلخانه‌ای در پروسه‌ی تولید بتنمی‌باشد. استفاده از سیمان‌های پرتلندِ حاوی مواد پوزولانی مانند خاکستر سرباره و دوده‌ی سیلیس از بهترین جایگزین‌هاست که در حال حاضر با شتاب بسیاری در حال گسترش است. با این حال، از این نوع مواد به صورت جایگزین کامل سیمان، فقط در برخی پروژه‌های محدود مثل پروژه‌های جاده‌ای و دفع زباله استفاده می‌شود.

استفاده از مواد پوزولانی و مواد سیمانیِ جایگزین، باعث کاهش استفاده از سیمان پرتلند می‌شود و در نهایت منجر به کاهش نیاز به تولید این نوع سیمان می‌گردد. بررسی‌ها نشان داده که استفاده از خاکستر سرباره به جای سیمان در بتن، دوام آن را به شکل قابل توجهی افزایش می‌دهد. در مقابل،‌ استفاده از مواد جایگزین سیمان، باعث کاهش سرعت گیرش و سخت شدن بتن می‌شود که با استفاده از فوق روان‌کننده‌ها قابل حل است. در آینده بایستی محدودیت‌ها و اجبارها برای زود به پایان رساندن پروژه‌ها برداشته شود. زیرا استفاده از این نوع مواد جایگزین باعث می‌شود تا پروژه نسبت به حالت عادی دیرتر به پایان برسد و بایستی به پیمانکاران فرصت داده شود تا زمان کافی برای استفاده از این نوع مواد را داشته باشند. این موضوع در بلند مدت باعث خواهد شد تا زیان وارده به طبیعت توسط تولید بتن کاهش یابد و گازهای گلخانه‌ایِ کمتری وارد جو زمین شوند.

 

 


خوردگی بتن مسلح در برابر آب دریا

1- تهاجم شیمیایی سولفات ها

2- تهاجم فیزیکی نمک ها

3- تفاوت ساز و کار خرابی این دو تهاجم

4- دانش و ساز و کار تاثیر این دو خرابی برای درک پتانسیل تاثیر آنها بر عملکرد سازه ها

5- خرابی متاثر از انجماد و ذوب

6- خرابی حاصل از واکنش شیمیایی سنگ های سیلیسی و کربناتی

7- خرابی ناشی از قرار گرفتن در معرض مواد شیمیایی

8- خرابی در اثر، سایش و فرسایش خوردگی فلزات درون بتن

9- روش های تعمیرات برای ارتفاع سیستم های محافظتی پوششی برای دوام سازه های بتنی

 

 

به دلیل پیچیدگی تاثیرات محیط بر سازه ها و عکس العمل های وارد شده، برخی بر این باورند که برای به دست آوردن عملکرد واقعی، تنها اصلاح خصوصیات مصالح، پاسخگو نیست و باید اجزای معماری، طراحی سازه، فرایند اجرایی، روش های ارزیابی و سیستم نگهداری، تعمیرات و پیش گیری نیز اصلاح شود.

تمام کسانی که به نحوی در به تولید و مصرف سازه های بتنی در گیرند، باید حداقل دانش از مهمترین فرایندهای خرابی و پارامترهای حاکم بر آن داشته باشند. در موارد خاص، چنین دانشی به شخص کمک

می کند تا توانایی تصمیم گیری صحیح در زمان درست را داشته باشد.

برخورد ظاهری به سازه به منظور طراحی عمر مفید، یک روش قابل اعتماد نیست. مدل سازی ساده مهندسی ارائه شده، زمینه ی نظری حاصل از تجربه عملی درخصوص فرایندهای خرابی عوامل حاکم

بر سازه است که امکان همگونی با سازو کار رفتارهای پیچیده در علم مصالح، تاثیرات حرارت، و اصول اساسی تاثیرگذار بر دوام سازه است.

همانطور که مشهود است، جریان انتقال مشترک رطوبت و مواد شیمیایی، حرارت در جرم بتن و ارتباط با محیط اطراف (آب و هوای میکروبی)، و پارامترهای کنترل کننده این سازو کار انتقال، به عنوان اصول اساسی دوام ترسیم شده اند.

حضور آب یا رطوبت تنها و مهمترین عامل کنترل کننده انواع خرابی ها بجز خرابی شیمیایی است. انتقال اب در درونبتن توسط نوع خلل و فرج، اندازه و طرز انتشار آنها تعیین می شود.

در عوض، نوع و نرخ فرایند خرابی بتن (فیزیکی، شیمیایی، و زیستی) در سازه های مسلح یا سازه های پیش تنیده، خوردگی تعیین کننده استقامت، سختی مصالح، بخش ها و اجزاء سازنده سازه است. همچنین شرایط سطوح سازه باتوجه به ایمنی، کاربری و نمای سازه و تاثیر گذاری آنها تعیین می شود و به طور کلی عملکرد سازه را تعیین می کند.

در حقیقت، آنچه در عمل اطمینان بخش است همانا رضایت از عملکرد سازه در یک گستره زمانی مناسب است که یک سازه مناسب را می توان در طول عمر مفید طراحی یا یک سازه نامناسب را با تعمیرات و نگهداری لازم در همان طول عمر مناسب مورد بهره برداری قرار داد.

 سازوکار انتقال در بتن

شرایط قابل ملاحظه
تقریباً در تمام فرایندهای فیزیکی و شیمیایی تاثیر گذار بر دوام، ساختار بتن دو عامل موثر و مهم است :

1- گازها و سازوکار انتقال در درون خلل و فرج (منافذ)

2- املاح محلول در آب

در اینجا انتقال گارها و آب و املاح مضر محلول در آب و سازوکار چسبندگی مورد نظر است. نرخ، گستره و تاثیر انتقال و سازوکار چسبندگی به شکل چشمگیری به ساختار خلل و فرج و آب و هوای میکرونی سطوح بتنی بستگی دارد. در این ارتباط انواع، اندازه و تناسب انتشار خلل و فرج در ساختار خلل و فرج موثر است.

ساختار خلل و فرج و پر شدن آنها از آب، شاخصی تعیین کننده و مرتبط با نفوذپذیری است و اهمیت زیادی دارد و کنترل کننده نفوذ گازها و مواد محلول در آب به درون بتن است. به علاوه، نرخ فرایند انتقال به طور چشمگیری به سازوکار انتقال بستگی دارد. در جایی که سازوکار چسبندگی شیمیایی مطرح باشد ترکیبات شیمیایی سیمان و خواص سنگدانهها اهمیت دارد. تمامی سازوکارهای انتقال، اساساً تابعی از ساختار خلل و فرج اند و با همان فرایند تعیین می شوند.

 

 

ساختار منافذ بتن

علاوه بر شرایط آب و هوایی میکرونی، نفوذپذیری عامل موثر و تعیین کننده ای در ساختار خلل و فرج سیمان است. در ارتباط با خصوصیات ساختار خلل و فرج انتقال مواد به درون مصالح متخلخل، دو عامل مهم وجود دارد :

تخلخل نسبی
مقدار منافذ انتشار یافته
تخلخل نسبی

تخلخل نسبی یعنی منافذی که به یکدیگر متصل اند، به طوری که انتقال مایعات و گازها و املاح محلول در آن امکان پذیر باشد. در ضمن تخلخل نسبی به حداکثر مقدار آب قابل برگشت بستگی دارد، که در محدوده خمیر سیمان حدود 20 تا 30 درصد است.

 مقدار منافذ انتشار یافته

به طور مشخص تاثیر نوع و نرخ سازوکار انتقال مربوط به آب، سازوکار چسبندگی است. اندازه های منافذ در خمیر سیمان که بزرگی و تنوع طبقه ها را مطرح می کند، بر طبق منابع، پیدایش و ویژگی منافذ عبارت اند از :

منافذ تحکیمی
منافذ حباب هوا
منافذ مویینه
منافذ ژلی
 

که معمولا به صورت زیر تقسیم بندی می شوند :

منافذ میکروسکوژی
منافذ مویینه
منافذ ریز اما قابل رویت
دو نوع آخر در ارتباط با دوام بتن است.

معمولاً، دوام بتن در برابر مواد شیمیایی و فیزیکی به شکل چشمگیری با افزایش مقدار منافذ مویینه کاهش می یابد.

سازوکار انتقال

منافذ درون بتن با اندازه های بزرگ احاطه شده با هوا از هوا پر می شوندو نسبت به رطوبت محیط از رطوبت نیز پر می شوند. سطوح داخلی این منافذ با یک فیام نازک از آب، از طریق جذب سطحی پوشیده شده اند.

فرایند انتقال هر نوع گاز، آب، یا مواد و املاک محلول در آب، برمبنای فرایند انتشار در شرایط محیطی مرطوب صورت می گیرد.

فرایند انتشار، تمایل به تعادل در اختلاف غلظت است. نیروی غالب بر انتشار، همان اختلاف غلظت

(فشار اسمزی) است.

انتشار گاز دیوکسید کربن به داخل بتن، مربوط به واکنش شیمیایی CO2 است که روی دیوار و منافذ داخل بتن توسعه می یابد و باعث کاهش غلظت درون منافذ می شود. در صورت خوردگی فلزات درون بتن شرایط برای نفوذ اکسیژن صادق است.

انتشار آب یا بخار آب از سطح به درون بتن و برعکس، نسبت به شرایط جوی محیط اطراف تغییر می کند و باعث می شود که حالت تر و خشک شدن بتن اتفاق بیفتد.

انتشار املاح محلول در آب (مثلاً کلرور) در لایه فیلم آبی که روی سطح منافذ بتن به وجود می آید، اتفاق می افتد و یا اینکه با پر شدن منافذ از آب اتفاق می افتد. در صورت کاهش ضخامت لایه فیلم آب کاهش می یابد و در واقع روی سطح دیواره ی منافذ درون بتن، نرخ انتشار املاح محلول در آب به طور چشمگیری با کاهش مقدار رطوبت درون بتنکاهش می یابد.

شرایط محیط اطراف

در شرایطی که سازه به طور مداوم در آب غوطه ور باشد مقدار آب، در شرایط نامطلوب به داخل آن انتقال یابد. نفوذ آب در وهله اول توسط کشش مویینه، که به کمک فشار ستون آب نیز تسریع می شود، صورت می گیرد.

ادامه انتقال آب فقط زمانی انجام می شود مه تبخیر آب از سطحی که در مجاورت هوا قرار دارد صورت پذیرد. میزان این انتقال به تبخیر و کشش منافذ مویینه بستگی دارد.

کشش منافذ مویینه

فشار نیروی هیدروستاتیک آب
همراه با آب، مواد محلول در آب (کربنات، کلرور، سلفور و غیره) به درون بتن انتقال می یابند. این املاح در داخل بتنپس از تبخیر آب باقی می مانند و غلظت چشمگیری از خود به جای می گذارند. شوره زدگی نیز به همین مربوط است. مواد حل شده در آب پس از بلوری شدن بر روی سطح باقی می مانند.

نیروهای انبساطی مربوط به بلوری شدن نمک ها در بتن نزدیک به سطح زمین و بتن فقط سبب مشکلاتی از نظر نمای ظاهری می شوند، ولی تاثیرات واکنش شیمیایی نسبت به غلظت موثر مواد مضر بسیار با اهمیت است. در دیگر مصالح متخلخل مانند سنگ های مرمر و غیره، پوسته پوسته شدن توسط بلوری شدن نمک ها، خرابی های جدی به وجود می آورد، از جمله مجسمه ها، یادبودها و غیره، که در معرض محیط مضر قرار می گیرند.

فرایند فیزیکی و ترک خوردگی

درخصوص دلایل ترک خوردگی به موارد زیر می توان اشاره کرد :

حرکات داخل بتن
انبساط مصالح مدفون داخل بتن
عوامل بیرونی
جمع شدگی پلاستیک و ته نشینی پلاستیکی
ترک خوردگی بر اثر بارگذاری مستقیم
ترک خوردگی در اثر تغییر شکل وارد شده
ترک خوردگی در طول میلگردها
عوامل موثر در پدید آمدن دلایل بالا عبارت اند از :

جرئیات سازه ای
جزئیات میلگردها
ترکیبات شیمیایی بتن
اجرا و عمل آوری
 یخبندان و مواد یخ زدا

نقطه اشباع و تاثیر حباب هوای داده شده
تاثیر مواد یخ زدا
تاثیر مصالح سنگی
عوامل موثر در پدید آمدن موارد بالا عبارت اند از :

ترکیبات شیمیایی بتن
شرایط محیطی
سنین بتن
 فرسایش و کهنگی

ساز و کار خرابی
فرسایش ناشی از سایش
فرسایش ناشی از حفره ای شدن
عوامل موثر در پدید آمدن آن مورد زیر است :

ترکیبات شیمیایی بتن
 فرایند شیمیایی

تهاجم شیمیایی بر بتن

دوام سازه بتنی اغلب با نرخی که بتن توسط واکنش تجزیه می شود، سنجیده می شود. مواد مهاجم

(یون ها و مولکول ها) که اساساً از محیط اطراف به داخل انتقال یافته اند، با مواد درون بتن واکنش شیمیایی انجام می دهند.

اگر مواد مهاجم در درون بتن باشد، این مواد باید به سوی مواد واکنش دهنده بتن انتقال یابد تا واکنش شیمیایی انجام پذیرد. اگر انتقالی انجام نشود واکنشی به وجود نخواهد آمد.

پیش شرط نرخ انجام واکنش های شیمیایی در درون بتن که حضور آب به هر شکلی (مایع یا گاز) الزامی است و اهمیت فراوانی دارد.

معمولاً، واکنش بین مواد مهاجم و مواد واکنش دهنده، به محض رسیدن به هم، انجام می پذیرد. اغلب به دلیل آهنگ ملایم انتقال مواد مهاجم درون بتن و مواد انتقال یافته به داخل بتن، این واکنش ها چندین سال طول می کشد تا تاثیر سوء خود را نشان دهد. بنابراین قابلیت در دسترس قرار گرفتن مواد واکنش زا توسط مواد مهاجم، قدم تعیین کننده ای در تعیین نرخ واکنش با مواد مهاجم است.

آهنگ افزایش دما اساساً تاثیرگذار در آهنگ انتقال (حرارت بالا سبب تحرک بیشتر یون ها و ملکول ها) است. نسبت به نوع واکنش نفوذپذیری بتن سالم با غیر فعال بودن لایه دارای مواد واکنش زا تعیین

می شود. شدت واکنش شیمیایی، که به کاهش کیفیت بتن منجر می شود، با میزان نفوذپذیری بتنارتباط مستقیم دارد.

در عمل مهمترین واکنش ها عبارت اند از :

واکنش اسیدها، نمک های آمونیاک، نمک های منیزیم و آب شیرین (سبک)، با بتن
واکنش سولفات ها با آلومینات درون بتن
واکنش قلیایی های سیمان با سنگدانه های واکنش زا در بتن
واکنش شیمیایی درون بتن،‌ افزایش احتمال خوردگی میلگردها را به همراه دارد که با واکنش بین اجزای، کلسیم آهک آزاد می کند و به کربناسیون بتن منجر می شود.
 

 

حمله اسیدها

عمل اسیدها (به عنوان مواد مهاجم) بر بتن سخت شده (به عنوان مواد واکنش زا) کم و بیش چیزی جز تبدیل تمام اجزای کلسیم نیست : هیدروکسید کلسیم، هیدرو سیلیکات کلسیم و هیدرات آلومینات کلسیم، به نمک های اسید مهاجم.

عمل اسید کلریدریک سبب تبدیل آن به کلرور کلسیم (که بسیار در آب محلول است) می شود.

عمل اسید سولفوریک سبب تبدیل آن به سولفات کلسیم، که به صورت گچ است، می شود.

عمل اسید نیتریک سبب تبدیل آن به نیترات کلسیم، که به سادگی در آب حل می شود، است.

عملکرد با اسیدهای آلی نیز به همین صورت است :

عمل اسید لاکتیک سبب تبدیل آن به لاکتات کلسیم می شود.

عمل اسید استیک سبب تبدیل آن به استات کلسیم می شود.

نتیجه حاصل از تمام فرایندهای یاد شده سبب از دست دادن چسبندگی سیمان سخت شده است.

آهنگ خرابی واکنش شیمیایی اسیدهای مختلف بر بتن، با مهاجم تر بودن حمله اسیدها نیست، بلکه به ساختار نمکی بستگی دارد، زیرا هر چه محلول بودن این نمک کمتر باشد تاثیرگذاری آن کمتر خواهد بود.

اگر نمک کلسیم حاصل در آب کمتر محلول باشد، آنگاه آهنگ واکنش تعیین کننده و مهم است، یعنی همان آهنگ حل شدن نمک کلسیم در آب.

 

 

 

دوام بتن

تمامی فرایندهای تحقیقات علمی با ساده سازی آنها همراه است. زمانی که با یک ساختار یا پدیده پیچیده روبه رو می شویم باید به طور دلخواه سیستم موجود را به اجزای ساده تر طبقه بندی کنیم تا تک تک آنها مورد مطالعه و بررسی قرار گیرند و مدیریت مناسب تری اعمال شود.

از نظر علمی، این روش کار قابل قبول است، اما نتایج حاصل ارزش محدود خاصی را دارد، مگر اینکه تمامی دیگر جوانب مربوط به پدیده را در نظر بگیریم و مورد مطالعه قرار دهیم. ضمناً سعی در به کارگیری دیگر اطلاعات موجود در بررسی انجام شود.

پیش از این باید سیستم های پیچیده را به روش مفهوم تمامیت پدیده بررسی کنیم و دانش تجربی را با دانش علمی مکمل یکدیگر قرار دهیم. در عوض، در بیشتر اوقات در مطالعات یک بخش از سیستم پیچیده داده ها را مثل اینکه به تمام مجموعه کلی مربوط است بررسی می کنیم. سپس در زمان شبیه سازی نتایج، به ندرت دانش مربوط به تجربه را مورد بررسی قرار می دهیم.

پایه دانشی که فقط از روش علمی تجزیه ای سرچشمه گرفته است کمبودی جدی به همراه دارد که باید اصلاح شود،‌زیرا علم پایه ای را برای استواری تکنولوژی به وجود می آورد. برای مثال چگونه می توان اتظار داشت که سازه بتنی با دوام است. اگر در توسعه ای به روش های آزمایش و مشخصات استاندارد به نظریه های علمی و شبیه سازهای ناکافی و نامناسب اکتفا کرده ایم، برای به تصویر کشیدن این موضوع، نظریه های رایج پذیرفته شده را بررسی می کنیم، طوری که نظریه های علت خرابی بتن از جمله : تهاجم سولفات ها، واکنش قلیایی سنگدانه های سیلیسی، خوردگی میلگردها، انجماد، و ذوب هستند.

تهاجم سولفات

بسیاری از سازه های بتنی که در معرض شرایط محیطی تهاجم سولفات قرار داشته اند، مورد بررسی قرار گرفته اند، اما یک نظریه متحد جهانی قابل قبول بر مقوله انبساط بتن مربوط به اترنگایت خمیر سیمان وجود ندارد. در میان انبوه نظرات، دو نظریه وجود دارد که یکی از آنها فشار رشد بلورهای حاصل از شکل گیری اترنگایت را مطرح می کند. نظریه دیگر فشار حاصل از انبساط بلور اترنگایت را پس از جذب سطحی آب بیان می کند.

اثبات این نظریات با بررسی خرابی ساختاری در عمل بسیار مشکل است، زیرا مشاهده فرایندهایی است که فقط آسیب هایی را از خود باقی می گذارند و هیچ اثری از دلایل و سبب حاصل از آسیب ها مشخص

نمی شود.

پیشنهاد شده است که آسیب بتن ناشی از بلوری شدن سولفات سدیم یک مثال پدیده فشار رشد بلوری است. البته اثبات برعکس، فاز تغییر بین تناردایت (Na2SO4) و هیبرابی لایت (Na2SO4.10H20) یک پدیده انبساط است. در موارد زیادی هیچ ربطی به شکل گیری اترنگایت و تهاجم سولفات بر خمیر سیمان ندارد.

تمایل اترنگایت به جذب سطحی آب که اغلب سبب افت سریع اسلامپ در بتن تازه اختلاط می باشد در تکنولوژی بتنپدیده شناخته شده ای است. در بتن سخت شده، شکل گیری اترنگایت و در نتیجه جذب سطحی آب سبب فشار زیادی می شود که انبساط و ترک خوردگی را به همراه دارد. بخصوص وقتی که همزمان با آن خمیر سیمان به دلیل تهاجم سولفات یا از دست دادن مقاومت مواجه باشد.

مشاهدات کارگاهی موضوع از دست دادن چسبندگی و مقاومت بتنرا که در دراز مدت در معرض تهاجم سولفات قرار گرفته است، تایید می کند.

نکته مهم دیگر از مشاهدات خرابی بتن در نتیجه تهاجم شیمیایی فقط بتن نفوذپذیری در محیطی مربوط امکان پذیر است.

اگر بتن سازه ای از ابتدا نفوذپذیری نباشد، در طول کاربرد خود می تواند به دلایل بسیاری به خاطر ترک خوردگی میکرونی چنین شود.

اینطور به نظر می رسد که پدیده انبساط شیمیایی اتفاق نمی افتد تا اینکه بتن با نفوذ آب به داخل آن با درجه بالایی اشباع شده باشد.

همچنین شواهد نشان می دهد که تهاجم سولفات، تنها دلیل آسیب به بتن نیست.

شواهد کربناسیون (مربوط به CaCO3) و یا واکنش قلیایی سیلیسی اغلب با خرابی حاصل از تهاجم سولفات همراه است. در اینجا باید ذکر شود که هر دو واکنش قلیایی سیلیسی و کربناسیون خمیر سیمان تمایل به تسریع تهاجم سولفات دارند، زیرا باعث کاهش قلیاییت خمیر سیمان و بنابراین کاهش چسبندگی و مقاومت می شوند.

واکنش قلیایی سیلیسی

واکنش شیمیایی بین یک نوع مشخص سیلیس فعال موجود در ذرات سنگدانه و یک سیمان با قلیاییت بالا سبب تولید یک نوع ژل سیلیسی قابل انبساط می شود که می تواند با جذب سطحی آب سبب انبساط چشمگیری شود. مانند تهاجم سولفات وقتی واکنش قلیایی سیلیسی باعث آسیب رسانی به بتن سازه

می شود، معمولاً دلیل خرابی دیگری نیز همراه آن وجود دارد.

برای مثال، طبق گزارشات حاصل از تحقیقات اینطور به نظر می رسد که واکنش قلیایی سیلیسی باعث آسیب تراورس های بتنی یش ساخته در کشورهای استرالیا، فنلاند، افریقای جنوبی، کانادا، امریکا و بسیاری از کشورهایی دیگر شده است، اما مطمئناً خرابی های ناشی از دوره های انجماد و ذوب کمک به انبساط مرتبط به واکنش قلیایی سیلیسی کرده است.

یکی از محققان این موضوع که تجربه بسیاری درباره مشکلات دوام بتن سازه های بتنی در سراسر جهان دارد، اخیراً مشاهدات خود را در واکنش قلیایی سیلیسی و تهاجم سولفات بدین گونه بیان کرده است :

مطالعه خرابی بتن مربوط به تهاجم سولفات، فساد تدریجی غیر متناسب کربناسیون و افت مقاومت خمیر سیماناست،‌ در حالی که در سنگدانه ها هیچ گونه تاثیری نشان نمی دهد. در چنین شرایطی تاثیر تهاجمی خردشدگی بتن از طرف سطح به داخل تبله شدن، و نهایتاً کاهش حجمی جرم بتن است.

واکنش قلیایی سیلیسی زیان آور در عمل، به طور شیمیایی در خمیر سیمان بدون تاثیر است، اما ذرات سنگدانه واکنش نشان داده از داخل شکسته و تجزیه شده است. این سازوکار انبساط داخلی را سبب

می شود. با وجود این، برای هر دو نوع تهاجم شیمیایی، در آزمایشگاه روش های آزمایش انبساط خطی منشور ملات (غیر مسلح) به کار برده می شود.

نتایج حاصل از تحقیقات گزارش داده شده (شامل واکنش قلیایی سیلیسی در سازه های بتن مسلح شده) نشان دهنده آن است که این واکنش سبب زیان های چشمگیری از نظر مقاومت های مکانیکی نمی شود. در واقع داده های حاصل از انبساط منشورهای ملاتی (غیر مسلح) کمترین یا هیچ ربطی به شرایط سرویس دهی واقعی و یا پیش بینی عمر مفید ندارد. اهمیت این موضوع در فصل دهم به طور کامل تشریح شده است.

خوردگی میلگرد فولادی

سازوکار خوردگی الکتروشیمیایی فولاد و شبیه سازی نمونه برای پیش بینی انبساط و ترک خوردگی بتن حاصل از خوردگی فولاد درون بتن نشان دهنده تاثیر نفوذ آب، اکسیژن، دی اکسید کربن و یون های کلرید فقط بر لایه خنثی موجود روی فولاد است. این موضوع تاثیر نفوذ یون ها بر مقاومت و ثبات مواد حاصل از هیدراسیون سیمان از جمله C-S-H و CH را مدنظر قرار نمی دهد.

از آنجا که C-S-H منبع اصلی مقاومت خمیر سیمان و ثبات C-S-H نسبت به تسلیم یون های OH در محلول درون خلل و فرج است، تاثیر جایگزینی (OH) توسط یون های اسیدی از جمله کربنات سولفات و کلرید بر مقاومت و مدول کشسانیبتن در نظر گرفته شده است.

سازوکار عمل انبساط و ترک خوردگی در اینجا نشان دهنده تاثیر شکل گیری محصول انبساطی بر روی فشار هیدرولیکیداخل خلل و فرج یک سیستم اشباع از آب است.

برای مثال، در تحقیقات خوردگی فولاد حاصل از صدمه فولاد درون بتن در یکی از پل ها مشاهدات صدمات به کناره های پل محدود به ترک خوردگی میکرونی در برابر دوره های ترک و خشک شدن و سرد و گرم شدن روزانه، اجتناب ناپذیر بوده است.

آسیب های وارد شده به بتن سازه در اثر خوردگی حاصل از فولاد در سازه های تحقیق شده نیز ترک های میکرونی دربتن حاصل از پدیده های دیگر بجز خوردگی فولاد نقش اصلی در افزایش شروع و پیشرفت صدمات مربوط به خوردگی فولاد داشته است

 

 

شبیه سازی چگونگی خرابی بتن

مرور جامع از فرایند خرابی بتن در شبیه سازی تمامیت، ارائه شده است. شبیه سازی تمامیت تاثیر هر دو دانش و حقایق علمیو دانش تجربی را درباره شاخص های زیست محیطی بر روی هر یک از اجزای بتن از جمله آب درون خلل و فرج، مورد ملاحظه قرار می دهد.

تاثیر عوامل زیست محیطی در دو مرحله بررسی شده است. در مرحله نخست تاثیر بارگذاری و هوازدگی (دوره های تر شدن و خیس شدن به همان اندازه سرد شدن و گرم شدن) کمک به توسعه و انتشار ترک های میکرونی، تا زمانی که به هم متصل شوند، می کند. به محض اینکه این اتفاق افتاد، نفوذپذیری بتن به اندازه زیاد افزایش می یابد و مرحله دوم شروع می شود. در این مرحله آب، اکسیژن و گاز کربنیک (CO2) و یون های اسیدی به آسانی به درون بتن نفوذ می کنند.

وجود این اجزا از یک سو به واکنش های متقابل شیمیایی و فیزیکی متعددی کمک می کند و حاصل آن از دست دادن بخشی از مقاومت و سختی بتن است از سوی دیگر فشار هیدرولیکی مایع درون خلل و فرج افزایش می یابد. تحت این دو فرایند همزمان مصالح ترک خورده تبله می کند و جرم خود را از دست

می دهد.

باتوجه به فرایند ساخت بتن که مرحله اول دفاع در برابر املاح مضر است، دیگر نیازی به میلگردهای پوشش داده شده از لایه اپوکسی نیست و می توان از سیمان تیپ پنج برای محافظت در برابر تهاجم سولفات و یا سیمان کم قلیایی یا سنگ دانه غیرفعال برای محافظت از واکنش قلیایی و انبساط حاصل از این واکنش استفاده کرد.

خرابی حاصل از تهاجم سولفات شامل مراحل زیر است :

1- تبدیل هیدروکسید کلسیم حاصل از هیدراسیون در اثر ترکیب با سولفات کلسیم و بلوری شدن این مواد در نتیجه انبساط آن به وجود آمدن اختلال.

2- آبدار شدن آلومینات و تبدیل فرایت به کلسیم سولفو- آلومینات و سولفو- فرایت. محصولات این واکنش ها از هیدرات های اولیه اصلی جای بیشتری را پر می کند و شکل گیری آنها باعث انبساط و اختلال

می شود.

3- در تجزیه سیلیکات کلسیم آبدار شده با حضور سولفات کلسیم، تنها واکنش (2) اتفاق می افتد، اما با وجود سولفات سدیم هر دو واکنش (1) و (2) ممکن است انجام شود.

با وجود سولفات منیزیم تمام سه نوع (1) و (2) و (3) اتفاق می افتد. دلیلش این است که تمام سولفات ها یک نوع عملکرد ندارند و نه تنها تغلیظ یون ها اهمیت دارد بلکه نوع کاتیون ها نیز مهم است. نمک های سولفات که به بتن حمله می کنند یا در میان خاک یا به صورت انبوه در خاک بیابان پر کننده یا در آب مخلوط اند.

تهاجم آب خالص (Softwater)

خرابی ناشی از نشت اجزای بتن توسط آب دارای اسید کربنیک و یا دارای سختی کم کربناتی است. آب خیلی خالص با محلول بسیار کم کلسیم در آن آب با سختی کم به طور موقت، موجب تهاجم بتن سخت شده می شود. این نوع آب ممکن است گاهی اوقات دارای دیوکسید کربن مضر باشد و در صورت حل کنندگی اب افزایش می یابد. سازوکار عمل این است که هیدروکسید کلسیم درون بتن را در خود حل می کند و از آن خارج می شود. یون های محلول از سیلیکات آبدار شده خارج می شود. بنابراین سبب تجزیه بتن سخت شده می شود.

در صورتی که بتن متراکم باشد عملکرد سطحی خواهد بود و بتن سطح خورده می شود و ظاهری سنگی باقی می گذارد. سنگ دانه های بزرگ شن ها بیرون می زند و مشخص می شود که حجم زیادی از بتن بدون تاثیر باقی می ماند.

اگر بتن نفوذپذیر باشد تهاجم این نوع آب عمر مفید آن را کاهش می دهد. این نوع تهاجم بسیار جدی برای لایه های نازک پوشش دهنده از جمله : پوشش کانال های آب، لوله های بتنی، و ملات روی لوله های فلزی است.

 

روش ها و ابزار ترمیم، بهسازی، مقاوم سازی و حفاظت

بسیاری سازمان ها، واحدها، موسسات و شرکت ها از بخش های مختلف در این صنعت فعال هستند و هر بخشی از صنایع که در صنعت بتن و صنعت ترمیم، بهسازی، مقاو سازی و حفاظت فعالیت می کند به طریقی می تواند به رونق این صنعت کمک کند. بعضی از آنها عبارت اند از :

شرکت هایی که خدمات حرفه ای ارائه می دهند، مانند جامعه مهندسان معمار، مهندسان طراح، و محاسب، مهندسان ارزیابی سازه های موجود، آزمایشگاه ها که خدمات کارگاهی برای مقوم کردن سازه ها انجام می دهند، شرکت های بیمه که کاربرد مشخصات فنی را با سیستم های حرفه ای ترمیم ارزیابی و بررسی

می کنند، تولید کنندگان و توزیع کنندگان مواد مصالح که تیم فنی آنها ارائه دهنده مشخصات فنی برای بخش تعمیرات و خدمات تخصصی، حرفه ای ،‌ پشتیبانی به مهندسان پیمانکار برای کاربرد و نصب به آنها کمک می کنند، و نهایتاً پیمانکاران که همگرایی طراحی، مشخصات فنی، مواد ،‌ مصالح، توسط نیروی انسانی، وسایل و ماشین آلات را در بخش تعمیرات ، بهسازی و مقاوم سازی به کار گرفته همگرایی و هم افزایی می آفرینند.

 روش های نوین ترمیم سطوح زیرکار

ترمیم سطوح بتنی آسیب دیده می تواند عملکرد مناسب کل سازه را دوباره به سازه برگرداند. حفاظت سطوح ترمیم شده خود نیز سبب محافظت از بتن زیر آن و هسته اصلی بتنی سازه، فلزات میلگردبندی، و پوشش بتنی میلگردها از محیط مضر می شود. همچنین کاهش عملکرد مورد نیاز برای دوام در برابر سایش، آب بندی و کاهش نفوذپذیری و افزایش مقاومت در برابر نیروهای زلزله، انفجار و آتش سوزی است.

شروع هر نوع عملیات ترمیمی، بهسازی و مقاوم سازی ابتدا نیاز به آماده کردن سطوح بتنی زیر کار دارد که ممکن است نیاز به کنده کاری توسط وسایل مکانیکی، با قلم و چکش، وسایل بادی، آب پاشی، بتن پاشی، ماسه پاشی، و تخریب یا پیشگیری یا به کارگیری مواد شیمیایی باشد.

روش ها و سیستم های آماده سازی سطوح بتنی مورد نیاز به تعمیرات، بهسازی و یا مقاوم سازی شامل؛ روش های ترمیم دوباره سازی سطوح بتنی، زیر سازی بتنی، شکل دهی، ملات های پایه سیمانی اجرا به وسیله دست، ترمیم بتنجایدهی شده در کارگاه، بتن پاشی که بعضی اوقات سطح وسیعی از سازه نیاز به تخریب و جایگزینی دارد.

روش های ترمیم حفاظت

روش های حفاظتی برای افزایش دوام و طول عمر خدماتی سازه توسط حفاظت از تهاجم شرایط محیط مضر مبتنی بر ملزومات طراحی. سیستم های بسیار زیادی در دسترس هستند که به شکل های مختلف مانند پوشش دهنده ها، علایق کننده ها،‌ ورق های محافظ، روکش ها، حفاظت کاتدی، و پوشش دهنده های رویه سطح به کار می روند.

 

روش های ترمیم آب بندکاری

تمام پیشروی های خرابی ها و سازوکار خرابی توسط آب و نفوذ آن است.

روش های آب بندی و جلوگیری کننده از نفوذ آب و انتشار آب به درون سازه از طریق ترک ها، درزها، و نقصان های واتر استاپ ها به درون سازه است که می توان از پوشش آب بندی پلیمری یا الاستومری استفاده نمود که می توان آن را در بخش محصولات وب سایت کلینیک بتن ایران و در قسمت محصولات آب بندی روئیت کرد

سیستم هایی طراحی شده اند که شامل جایگزینی، درزگیری، ورق های آب بندکننده، تزریق گروت درون درزها، اضافه کردن افزودنی ها به بتن، اندودکاری و غیره اند.

 روش های ترمیم مقاوم کردن

 

 

 

موارد مهم خوردگی سازه های بتنی شامل موارد زیر است :

1- تهاجم شیمیایی سولفات ها

2- تهاجم فیزیکی نمک ها

3- تفاوت ساز و کار خرابی این دو تهاجم

4- دانش و ساز و کار تاثیر این دو خرابی برای درک پتانسیل تاثیر آنها بر عملکرد سازه ها

5- خرابی متاثر از انجماد و ذوب

6- خرابی حاصل از واکنش شیمیایی سنگ های سیلیسی و کربناتی

7- خرابی ناشی از قرار گرفتن در معرض مواد شیمیایی

8- خرابی در اثر، سایش و فرسایش خوردگی فلزات درون بتن

9- روش های تعمیرات برای ارتفاع سیستم های محافظتی پوششی برای دوام سازه های بتنی

 

 

به دلیل پیچیدگی تاثیرات محیط بر سازه ها و عکس العمل های وارد شده، برخی بر این باورند که برای به دست آوردن عملکرد واقعی، تنها اصلاح خصوصیات مصالح، پاسخگو نیست و باید اجزای معماری، طراحی سازه، فرایند اجرایی، روش های ارزیابی و سیستم نگهداری، تعمیرات و پیش گیری نیز اصلاح شود.

تمام کسانی که به نحوی در به تولید و مصرف سازه های بتنی در گیرند، باید حداقل دانش از مهمترین فرایندهای خرابی و پارامترهای حاکم بر آن داشته باشند. در موارد خاص، چنین دانشی به شخص کمک

می کند تا توانایی تصمیم گیری صحیح در زمان درست را داشته باشد.

برخورد ظاهری به سازه به منظور طراحی عمر مفید، یک روش قابل اعتماد نیست. مدل سازی ساده مهندسی ارائه شده، زمینه ی نظری حاصل از تجربه عملی درخصوص فرایندهای خرابی عوامل حاکم

بر سازه است که امکان همگونی با سازو کار رفتارهای پیچیده در علم مصالح، تاثیرات حرارت، و اصول اساسی تاثیرگذار بر دوام سازه است.

همانطور که مشهود است، جریان انتقال مشترک رطوبت و مواد شیمیایی، حرارت در جرم بتن و ارتباط با محیط اطراف (آب و هوای میکروبی)، و پارامترهای کنترل کننده این سازو کار انتقال، به عنوان اصول اساسی دوام ترسیم شده اند.

حضور آب یا رطوبت تنها و مهمترین عامل کنترل کننده انواع خرابی ها بجز خرابی شیمیایی است. انتقال اب در درونبتن توسط نوع خلل و فرج، اندازه و طرز انتشار آنها تعیین می شود.

در عوض، نوع و نرخ فرایند خرابی بتن (فیزیکی، شیمیایی، و زیستی) در سازه های مسلح یا سازه های پیش تنیده، خوردگی تعیین کننده استقامت، سختی مصالح، بخش ها و اجزاء سازنده سازه است. همچنین شرایط سطوح سازه باتوجه به ایمنی، کاربری و نمای سازه و تاثیر گذاری آنها تعیین می شود و به طور کلی عملکرد سازه را تعیین می کند.

در حقیقت، آنچه در عمل اطمینان بخش است همانا رضایت از عملکرد سازه در یک گستره زمانی مناسب است که یک سازه مناسب را می توان در طول عمر مفید طراحی یا یک سازه نامناسب را با تعمیرات و نگهداری لازم در همان طول عمر مناسب مورد بهره برداری قرار داد.

 سازوکار انتقال در بتن

شرایط قابل ملاحظه
تقریباً در تمام فرایندهای فیزیکی و شیمیایی تاثیر گذار بر دوام، ساختار بتن دو عامل موثر و مهم است :

1- گازها و سازوکار انتقال در درون خلل و فرج (منافذ)

2- املاح محلول در آب

در اینجا انتقال گارها و آب و املاح مضر محلول در آب و سازوکار چسبندگی مورد نظر است. نرخ، گستره و تاثیر انتقال و سازوکار چسبندگی به شکل چشمگیری به ساختار خلل و فرج و آب و هوای میکرونی سطوح بتنی بستگی دارد. در این ارتباط انواع، اندازه و تناسب انتشار خلل و فرج در ساختار خلل و فرج موثر است.

ساختار خلل و فرج و پر شدن آنها از آب، شاخصی تعیین کننده و مرتبط با نفوذپذیری است و اهمیت زیادی دارد و کنترل کننده نفوذ گازها و مواد محلول در آب به درون بتن است. به علاوه، نرخ فرایند انتقال به طور چشمگیری به سازوکار انتقال بستگی دارد. در جایی که سازوکار چسبندگی شیمیایی مطرح باشد ترکیبات شیمیایی سیمان و خواص سنگدانهها اهمیت دارد. تمامی سازوکارهای انتقال، اساساً تابعی از ساختار خلل و فرج اند و با همان فرایند تعیین می شوند.

 

 

ساختار منافذ بتن

علاوه بر شرایط آب و هوایی میکرونی، نفوذپذیری عامل موثر و تعیین کننده ای در ساختار خلل و فرج سیمان است. در ارتباط با خصوصیات ساختار خلل و فرج انتقال مواد به درون مصالح متخلخل، دو عامل مهم وجود دارد :

تخلخل نسبی
مقدار منافذ انتشار یافته
تخلخل نسبی

تخلخل نسبی یعنی منافذی که به یکدیگر متصل اند، به طوری که انتقال مایعات و گازها و املاح محلول در آن امکان پذیر باشد. در ضمن تخلخل نسبی به حداکثر مقدار آب قابل برگشت بستگی دارد، که در محدوده خمیر سیمان حدود 20 تا 30 درصد است.

 مقدار منافذ انتشار یافته

به طور مشخص تاثیر نوع و نرخ سازوکار انتقال مربوط به آب، سازوکار چسبندگی است. اندازه های منافذ در خمیر سیمان که بزرگی و تنوع طبقه ها را مطرح می کند، بر طبق منابع، پیدایش و ویژگی منافذ عبارت اند از :

منافذ تحکیمی
منافذ حباب هوا
منافذ مویینه
منافذ ژلی
 

که معمولا به صورت زیر تقسیم بندی می شوند :

منافذ میکروسکوژی
منافذ مویینه
منافذ ریز اما قابل رویت
دو نوع آخر در ارتباط با دوام بتن است.

معمولاً، دوام بتن در برابر مواد شیمیایی و فیزیکی به شکل چشمگیری با افزایش مقدار منافذ مویینه کاهش می یابد.

سازوکار انتقال

منافذ درون بتن با اندازه های بزرگ احاطه شده با هوا از هوا پر می شوندو نسبت به رطوبت محیط از رطوبت نیز پر می شوند. سطوح داخلی این منافذ با یک فیام نازک از آب، از طریق جذب سطحی پوشیده شده اند.

فرایند انتقال هر نوع گاز، آب، یا مواد و املاک محلول در آب، برمبنای فرایند انتشار در شرایط محیطی مرطوب صورت می گیرد.

فرایند انتشار، تمایل به تعادل در اختلاف غلظت است. نیروی غالب بر انتشار، همان اختلاف غلظت

(فشار اسمزی) است.

انتشار گاز دیوکسید کربن به داخل بتن، مربوط به واکنش شیمیایی CO2 است که روی دیوار و منافذ داخل بتن توسعه می یابد و باعث کاهش غلظت درون منافذ می شود. در صورت خوردگی فلزات درون بتن شرایط برای نفوذ اکسیژن صادق است.

انتشار آب یا بخار آب از سطح به درون بتن و برعکس، نسبت به شرایط جوی محیط اطراف تغییر می کند و باعث می شود که حالت تر و خشک شدن بتن اتفاق بیفتد.

انتشار املاح محلول در آب (مثلاً کلرور) در لایه فیلم آبی که روی سطح منافذ بتن به وجود می آید، اتفاق می افتد و یا اینکه با پر شدن منافذ از آب اتفاق می افتد. در صورت کاهش ضخامت لایه فیلم آب کاهش می یابد و در واقع روی سطح دیواره ی منافذ درون بتن، نرخ انتشار املاح محلول در آب به طور چشمگیری با کاهش مقدار رطوبت درون بتنکاهش می یابد.

شرایط محیط اطراف

در شرایطی که سازه به طور مداوم در آب غوطه ور باشد مقدار آب، در شرایط نامطلوب به داخل آن انتقال یابد. نفوذ آب در وهله اول توسط کشش مویینه، که به کمک فشار ستون آب نیز تسریع می شود، صورت می گیرد.

ادامه انتقال آب فقط زمانی انجام می شود مه تبخیر آب از سطحی که در مجاورت هوا قرار دارد صورت پذیرد. میزان این انتقال به تبخیر و کشش منافذ مویینه بستگی دارد.

کشش منافذ مویینه

فشار نیروی هیدروستاتیک آب
همراه با آب، مواد محلول در آب (کربنات، کلرور، سلفور و غیره) به درون بتن انتقال می یابند. این املاح در داخل بتنپس از تبخیر آب باقی می مانند و غلظت چشمگیری از خود به جای می گذارند. شوره زدگی نیز به همین مربوط است. مواد حل شده در آب پس از بلوری شدن بر روی سطح باقی می مانند.

نیروهای انبساطی مربوط به بلوری شدن نمک ها در بتن نزدیک به سطح زمین و بتن فقط سبب مشکلاتی از نظر نمای ظاهری می شوند، ولی تاثیرات واکنش شیمیایی نسبت به غلظت موثر مواد مضر بسیار با اهمیت است. در دیگر مصالح متخلخل مانند سنگ های مرمر و غیره، پوسته پوسته شدن توسط بلوری شدن نمک ها، خرابی های جدی به وجود می آورد، از جمله مجسمه ها، یادبودها و غیره، که در معرض محیط مضر قرار می گیرند.

فرایند فیزیکی و ترک خوردگی

درخصوص دلایل ترک خوردگی به موارد زیر می توان اشاره کرد :

حرکات داخل بتن
انبساط مصالح مدفون داخل بتن
عوامل بیرونی
جمع شدگی پلاستیک و ته نشینی پلاستیکی
ترک خوردگی بر اثر بارگذاری مستقیم
ترک خوردگی در اثر تغییر شکل وارد شده
ترک خوردگی در طول میلگردها
عوامل موثر در پدید آمدن دلایل بالا عبارت اند از :

جرئیات سازه ای
جزئیات میلگردها
ترکیبات شیمیایی بتن
اجرا و عمل آوری
 یخبندان و مواد یخ زدا

نقطه اشباع و تاثیر حباب هوای داده شده
تاثیر مواد یخ زدا
تاثیر مصالح سنگی
عوامل موثر در پدید آمدن موارد بالا عبارت اند از :

ترکیبات شیمیایی بتن
شرایط محیطی
سنین بتن
 فرسایش و کهنگی

ساز و کار خرابی
فرسایش ناشی از سایش
فرسایش ناشی از حفره ای شدن
عوامل موثر در پدید آمدن آن مورد زیر است :

ترکیبات شیمیایی بتن
 فرایند شیمیایی

تهاجم شیمیایی بر بتن

دوام سازه بتنی اغلب با نرخی که بتن توسط واکنش تجزیه می شود، سنجیده می شود. مواد مهاجم

(یون ها و مولکول ها) که اساساً از محیط اطراف به داخل انتقال یافته اند، با مواد درون بتن واکنش شیمیایی انجام می دهند.

اگر مواد مهاجم در درون بتن باشد، این مواد باید به سوی مواد واکنش دهنده بتن انتقال یابد تا واکنش شیمیایی انجام پذیرد. اگر انتقالی انجام نشود واکنشی به وجود نخواهد آمد.

پیش شرط نرخ انجام واکنش های شیمیایی در درون بتن که حضور آب به هر شکلی (مایع یا گاز) الزامی است و اهمیت فراوانی دارد.

معمولاً، واکنش بین مواد مهاجم و مواد واکنش دهنده، به محض رسیدن به هم، انجام می پذیرد. اغلب به دلیل آهنگ ملایم انتقال مواد مهاجم درون بتن و مواد انتقال یافته به داخل بتن، این واکنش ها چندین سال طول می کشد تا تاثیر سوء خود را نشان دهد. بنابراین قابلیت در دسترس قرار گرفتن مواد واکنش زا توسط مواد مهاجم، قدم تعیین کننده ای در تعیین نرخ واکنش با مواد مهاجم است.

آهنگ افزایش دما اساساً تاثیرگذار در آهنگ انتقال (حرارت بالا سبب تحرک بیشتر یون ها و ملکول ها) است. نسبت به نوع واکنش نفوذپذیری بتن سالم با غیر فعال بودن لایه دارای مواد واکنش زا تعیین

می شود. شدت واکنش شیمیایی، که به کاهش کیفیت بتن منجر می شود، با میزان نفوذپذیری بتنارتباط مستقیم دارد.

در عمل مهمترین واکنش ها عبارت اند از :

واکنش اسیدها، نمک های آمونیاک، نمک های منیزیم و آب شیرین (سبک)، با بتن
واکنش سولفات ها با آلومینات درون بتن
واکنش قلیایی های سیمان با سنگدانه های واکنش زا در بتن
واکنش شیمیایی درون بتن،‌ افزایش احتمال خوردگی میلگردها را به همراه دارد که با واکنش بین اجزای، کلسیم آهک آزاد می کند و به کربناسیون بتن منجر می شود.
 

 

حمله اسیدها

عمل اسیدها (به عنوان مواد مهاجم) بر بتن سخت شده (به عنوان مواد واکنش زا) کم و بیش چیزی جز تبدیل تمام اجزای کلسیم نیست : هیدروکسید کلسیم، هیدرو سیلیکات کلسیم و هیدرات آلومینات کلسیم، به نمک های اسید مهاجم.

عمل اسید کلریدریک سبب تبدیل آن به کلرور کلسیم (که بسیار در آب محلول است) می شود.

عمل اسید سولفوریک سبب تبدیل آن به سولفات کلسیم، که به صورت گچ است، می شود.

عمل اسید نیتریک سبب تبدیل آن به نیترات کلسیم، که به سادگی در آب حل می شود، است.

عملکرد با اسیدهای آلی نیز به همین صورت است :

عمل اسید لاکتیک سبب تبدیل آن به لاکتات کلسیم می شود.

عمل اسید استیک سبب تبدیل آن به استات کلسیم می شود.

نتیجه حاصل از تمام فرایندهای یاد شده سبب از دست دادن چسبندگی سیمان سخت شده است.

آهنگ خرابی واکنش شیمیایی اسیدهای مختلف بر بتن، با مهاجم تر بودن حمله اسیدها نیست، بلکه به ساختار نمکی بستگی دارد، زیرا هر چه محلول بودن این نمک کمتر باشد تاثیرگذاری آن کمتر خواهد بود.

اگر نمک کلسیم حاصل در آب کمتر محلول باشد، آنگاه آهنگ واکنش تعیین کننده و مهم است، یعنی همان آهنگ حل شدن نمک کلسیم در آب.

 

 

 

دوام بتن

تمامی فرایندهای تحقیقات علمی با ساده سازی آنها همراه است. زمانی که با یک ساختار یا پدیده پیچیده روبه رو می شویم باید به طور دلخواه سیستم موجود را به اجزای ساده تر طبقه بندی کنیم تا تک تک آنها مورد مطالعه و بررسی قرار گیرند و مدیریت مناسب تری اعمال شود.

از نظر علمی، این روش کار قابل قبول است، اما نتایج حاصل ارزش محدود خاصی را دارد، مگر اینکه تمامی دیگر جوانب مربوط به پدیده را در نظر بگیریم و مورد مطالعه قرار دهیم. ضمناً سعی در به کارگیری دیگر اطلاعات موجود در بررسی انجام شود.

پیش از این باید سیستم های پیچیده را به روش مفهوم تمامیت پدیده بررسی کنیم و دانش تجربی را با دانش علمی مکمل یکدیگر قرار دهیم. در عوض، در بیشتر اوقات در مطالعات یک بخش از سیستم پیچیده داده ها را مثل اینکه به تمام مجموعه کلی مربوط است بررسی می کنیم. سپس در زمان شبیه سازی نتایج، به ندرت دانش مربوط به تجربه را مورد بررسی قرار می دهیم.

پایه دانشی که فقط از روش علمی تجزیه ای سرچشمه گرفته است کمبودی جدی به همراه دارد که باید اصلاح شود،‌زیرا علم پایه ای را برای استواری تکنولوژی به وجود می آورد. برای مثال چگونه می توان اتظار داشت که سازه بتنی با دوام است. اگر در توسعه ای به روش های آزمایش و مشخصات استاندارد به نظریه های علمی و شبیه سازهای ناکافی و نامناسب اکتفا کرده ایم، برای به تصویر کشیدن این موضوع، نظریه های رایج پذیرفته شده را بررسی می کنیم، طوری که نظریه های علت خرابی بتن از جمله : تهاجم سولفات ها، واکنش قلیایی سنگدانه های سیلیسی، خوردگی میلگردها، انجماد، و ذوب هستند.

تهاجم سولفات

بسیاری از سازه های بتنی که در معرض شرایط محیطی تهاجم سولفات قرار داشته اند، مورد بررسی قرار گرفته اند، اما یک نظریه متحد جهانی قابل قبول بر مقوله انبساط بتن مربوط به اترنگایت خمیر سیمان وجود ندارد. در میان انبوه نظرات، دو نظریه وجود دارد که یکی از آنها فشار رشد بلورهای حاصل از شکل گیری اترنگایت را مطرح می کند. نظریه دیگر فشار حاصل از انبساط بلور اترنگایت را پس از جذب سطحی آب بیان می کند.

اثبات این نظریات با بررسی خرابی ساختاری در عمل بسیار مشکل است، زیرا مشاهده فرایندهایی است که فقط آسیب هایی را از خود باقی می گذارند و هیچ اثری از دلایل و سبب حاصل از آسیب ها مشخص

نمی شود.

پیشنهاد شده است که آسیب بتن ناشی از بلوری شدن سولفات سدیم یک مثال پدیده فشار رشد بلوری است. البته اثبات برعکس، فاز تغییر بین تناردایت (Na2SO4) و هیبرابی لایت (Na2SO4.10H20) یک پدیده انبساط است. در موارد زیادی هیچ ربطی به شکل گیری اترنگایت و تهاجم سولفات بر خمیر سیمان ندارد.

تمایل اترنگایت به جذب سطحی آب که اغلب سبب افت سریع اسلامپ در بتن تازه اختلاط می باشد در تکنولوژی بتنپدیده شناخته شده ای است. در بتن سخت شده، شکل گیری اترنگایت و در نتیجه جذب سطحی آب سبب فشار زیادی می شود که انبساط و ترک خوردگی را به همراه دارد. بخصوص وقتی که همزمان با آن خمیر سیمان به دلیل تهاجم سولفات یا از دست دادن مقاومت مواجه باشد.

مشاهدات کارگاهی موضوع از دست دادن چسبندگی و مقاومت بتنرا که در دراز مدت در معرض تهاجم سولفات قرار گرفته است، تایید می کند.

نکته مهم دیگر از مشاهدات خرابی بتن در نتیجه تهاجم شیمیایی فقط بتن نفوذپذیری در محیطی مربوط امکان پذیر است.

اگر بتن سازه ای از ابتدا نفوذپذیری نباشد، در طول کاربرد خود می تواند به دلایل بسیاری به خاطر ترک خوردگی میکرونی چنین شود.

اینطور به نظر می رسد که پدیده انبساط شیمیایی اتفاق نمی افتد تا اینکه بتن با نفوذ آب به داخل آن با درجه بالایی اشباع شده باشد.

همچنین شواهد نشان می دهد که تهاجم سولفات، تنها دلیل آسیب به بتن نیست.

شواهد کربناسیون (مربوط به CaCO3) و یا واکنش قلیایی سیلیسی اغلب با خرابی حاصل از تهاجم سولفات همراه است. در اینجا باید ذکر شود که هر دو واکنش قلیایی سیلیسی و کربناسیون خمیر سیمان تمایل به تسریع تهاجم سولفات دارند، زیرا باعث کاهش قلیاییت خمیر سیمان و بنابراین کاهش چسبندگی و مقاومت می شوند.

واکنش قلیایی سیلیسی

واکنش شیمیایی بین یک نوع مشخص سیلیس فعال موجود در ذرات سنگدانه و یک سیمان با قلیاییت بالا سبب تولید یک نوع ژل سیلیسی قابل انبساط می شود که می تواند با جذب سطحی آب سبب انبساط چشمگیری شود. مانند تهاجم سولفات وقتی واکنش قلیایی سیلیسی باعث آسیب رسانی به بتن سازه

می شود، معمولاً دلیل خرابی دیگری نیز همراه آن وجود دارد.

برای مثال، طبق گزارشات حاصل از تحقیقات اینطور به نظر می رسد که واکنش قلیایی سیلیسی باعث آسیب تراورس های بتنی یش ساخته در کشورهای استرالیا، فنلاند، افریقای جنوبی، کانادا، امریکا و بسیاری از کشورهایی دیگر شده است، اما مطمئناً خرابی های ناشی از دوره های انجماد و ذوب کمک به انبساط مرتبط به واکنش قلیایی سیلیسی کرده است.

یکی از محققان این موضوع که تجربه بسیاری درباره مشکلات دوام بتن سازه های بتنی در سراسر جهان دارد، اخیراً مشاهدات خود را در واکنش قلیایی سیلیسی و تهاجم سولفات بدین گونه بیان کرده است :

مطالعه خرابی بتن مربوط به تهاجم سولفات، فساد تدریجی غیر متناسب کربناسیون و افت مقاومت خمیر سیماناست،‌ در حالی که در سنگدانه ها هیچ گونه تاثیری نشان نمی دهد. در چنین شرایطی تاثیر تهاجمی خردشدگی بتن از طرف سطح به داخل تبله شدن، و نهایتاً کاهش حجمی جرم بتن است.

واکنش قلیایی سیلیسی زیان آور در عمل، به طور شیمیایی در خمیر سیمان بدون تاثیر است، اما ذرات سنگدانه واکنش نشان داده از داخل شکسته و تجزیه شده است. این سازوکار انبساط داخلی را سبب

می شود. با وجود این، برای هر دو نوع تهاجم شیمیایی، در آزمایشگاه روش های آزمایش انبساط خطی منشور ملات (غیر مسلح) به کار برده می شود.

نتایج حاصل از تحقیقات گزارش داده شده (شامل واکنش قلیایی سیلیسی در سازه های بتن مسلح شده) نشان دهنده آن است که این واکنش سبب زیان های چشمگیری از نظر مقاومت های مکانیکی نمی شود. در واقع داده های حاصل از انبساط منشورهای ملاتی (غیر مسلح) کمترین یا هیچ ربطی به شرایط سرویس دهی واقعی و یا پیش بینی عمر مفید ندارد. اهمیت این موضوع در فصل دهم به طور کامل تشریح شده است.

خوردگی میلگرد فولادی

سازوکار خوردگی الکتروشیمیایی فولاد و شبیه سازی نمونه برای پیش بینی انبساط و ترک خوردگی بتن حاصل از خوردگی فولاد درون بتن نشان دهنده تاثیر نفوذ آب، اکسیژن، دی اکسید کربن و یون های کلرید فقط بر لایه خنثی موجود روی فولاد است. این موضوع تاثیر نفوذ یون ها بر مقاومت و ثبات مواد حاصل از هیدراسیون سیمان از جمله C-S-H و CH را مدنظر قرار نمی دهد.

از آنجا که C-S-H منبع اصلی مقاومت خمیر سیمان و ثبات C-S-H نسبت به تسلیم یون های OH در محلول درون خلل و فرج است، تاثیر جایگزینی (OH) توسط یون های اسیدی از جمله کربنات سولفات و کلرید بر مقاومت و مدول کشسانیبتن در نظر گرفته شده است.

سازوکار عمل انبساط و ترک خوردگی در اینجا نشان دهنده تاثیر شکل گیری محصول انبساطی بر روی فشار هیدرولیکیداخل خلل و فرج یک سیستم اشباع از آب است.

برای مثال، در تحقیقات خوردگی فولاد حاصل از صدمه فولاد درون بتن در یکی از پل ها مشاهدات صدمات به کناره های پل محدود به ترک خوردگی میکرونی در برابر دوره های ترک و خشک شدن و سرد و گرم شدن روزانه، اجتناب ناپذیر بوده است.

آسیب های وارد شده به بتن سازه در اثر خوردگی حاصل از فولاد در سازه های تحقیق شده نیز ترک های میکرونی دربتن حاصل از پدیده های دیگر بجز خوردگی فولاد نقش اصلی در افزایش شروع و پیشرفت صدمات مربوط به خوردگی فولاد داشته است

 

 

شبیه سازی چگونگی خرابی بتن

مرور جامع از فرایند خرابی بتن در شبیه سازی تمامیت، ارائه شده است. شبیه سازی تمامیت تاثیر هر دو دانش و حقایق علمیو دانش تجربی را درباره شاخص های زیست محیطی بر روی هر یک از اجزای بتن از جمله آب درون خلل و فرج، مورد ملاحظه قرار می دهد.

تاثیر عوامل زیست محیطی در دو مرحله بررسی شده است. در مرحله نخست تاثیر بارگذاری و هوازدگی (دوره های تر شدن و خیس شدن به همان اندازه سرد شدن و گرم شدن) کمک به توسعه و انتشار ترک های میکرونی، تا زمانی که به هم متصل شوند، می کند. به محض اینکه این اتفاق افتاد، نفوذپذیری بتن به اندازه زیاد افزایش می یابد و مرحله دوم شروع می شود. در این مرحله آب، اکسیژن و گاز کربنیک (CO2) و یون های اسیدی به آسانی به درون بتن نفوذ می کنند.

وجود این اجزا از یک سو به واکنش های متقابل شیمیایی و فیزیکی متعددی کمک می کند و حاصل آن از دست دادن بخشی از مقاومت و سختی بتن است از سوی دیگر فشار هیدرولیکی مایع درون خلل و فرج افزایش می یابد. تحت این دو فرایند همزمان مصالح ترک خورده تبله می کند و جرم خود را از دست

می دهد.

باتوجه به فرایند ساخت بتن که مرحله اول دفاع در برابر املاح مضر است، دیگر نیازی به میلگردهای پوشش داده شده از لایه اپوکسی نیست و می توان از سیمان تیپ پنج برای محافظت در برابر تهاجم سولفات و یا سیمان کم قلیایی یا سنگ دانه غیرفعال برای محافظت از واکنش قلیایی و انبساط حاصل از این واکنش استفاده کرد.

خرابی حاصل از تهاجم سولفات شامل مراحل زیر است :

1- تبدیل هیدروکسید کلسیم حاصل از هیدراسیون در اثر ترکیب با سولفات کلسیم و بلوری شدن این مواد در نتیجه انبساط آن به وجود آمدن اختلال.

2- آبدار شدن آلومینات و تبدیل فرایت به کلسیم سولفو- آلومینات و سولفو- فرایت. محصولات این واکنش ها از هیدرات های اولیه اصلی جای بیشتری را پر می کند و شکل گیری آنها باعث انبساط و اختلال

می شود.

3- در تجزیه سیلیکات کلسیم آبدار شده با حضور سولفات کلسیم، تنها واکنش (2) اتفاق می افتد، اما با وجود سولفات سدیم هر دو واکنش (1) و (2) ممکن است انجام شود.

با وجود سولفات منیزیم تمام سه نوع (1) و (2) و (3) اتفاق می افتد. دلیلش این است که تمام سولفات ها یک نوع عملکرد ندارند و نه تنها تغلیظ یون ها اهمیت دارد بلکه نوع کاتیون ها نیز مهم است. نمک های سولفات که به بتن حمله می کنند یا در میان خاک یا به صورت انبوه در خاک بیابان پر کننده یا در آب مخلوط اند.

تهاجم آب خالص (Softwater)

خرابی ناشی از نشت اجزای بتن توسط آب دارای اسید کربنیک و یا دارای سختی کم کربناتی است. آب خیلی خالص با محلول بسیار کم کلسیم در آن آب با سختی کم به طور موقت، موجب تهاجم بتن سخت شده می شود. این نوع آب ممکن است گاهی اوقات دارای دیوکسید کربن مضر باشد و در صورت حل کنندگی اب افزایش می یابد. سازوکار عمل این است که هیدروکسید کلسیم درون بتن را در خود حل می کند و از آن خارج می شود. یون های محلول از سیلیکات آبدار شده خارج می شود. بنابراین سبب تجزیه بتن سخت شده می شود.

در صورتی که بتن متراکم باشد عملکرد سطحی خواهد بود و بتن سطح خورده می شود و ظاهری سنگی باقی می گذارد. سنگ دانه های بزرگ شن ها بیرون می زند و مشخص می شود که حجم زیادی از بتن بدون تاثیر باقی می ماند.

اگر بتن نفوذپذیر باشد تهاجم این نوع آب عمر مفید آن را کاهش می دهد. این نوع تهاجم بسیار جدی برای لایه های نازک پوشش دهنده از جمله : پوشش کانال های آب، لوله های بتنی، و ملات روی لوله های فلزی است.

 

روش ها و ابزار ترمیم، بهسازی، مقاوم سازی و حفاظت

بسیاری سازمان ها، واحدها، موسسات و شرکت ها از بخش های مختلف در این صنعت فعال هستند و هر بخشی از صنایع که در صنعت بتن و صنعت ترمیم، بهسازی، مقاو سازی و حفاظت فعالیت می کند به طریقی می تواند به رونق این صنعت کمک کند. بعضی از آنها عبارت اند از :

شرکت هایی که خدمات حرفه ای ارائه می دهند، مانند جامعه مهندسان معمار، مهندسان طراح، و محاسب، مهندسان ارزیابی سازه های موجود، آزمایشگاه ها که خدمات کارگاهی برای مقوم کردن سازه ها انجام می دهند، شرکت های بیمه که کاربرد مشخصات فنی را با سیستم های حرفه ای ترمیم ارزیابی و بررسی

می کنند، تولید کنندگان و توزیع کنندگان مواد مصالح که تیم فنی آنها ارائه دهنده مشخصات فنی برای بخش تعمیرات و خدمات تخصصی، حرفه ای ،‌ پشتیبانی به مهندسان پیمانکار برای کاربرد و نصب به آنها کمک می کنند، و نهایتاً پیمانکاران که همگرایی طراحی، مشخصات فنی، مواد ،‌ مصالح، توسط نیروی انسانی، وسایل و ماشین آلات را در بخش تعمیرات ، بهسازی و مقاوم سازی به کار گرفته همگرایی و هم افزایی می آفرینند.

 روش های نوین ترمیم سطوح زیرکار

ترمیم سطوح بتنی آسیب دیده می تواند عملکرد مناسب کل سازه را دوباره به سازه برگرداند. حفاظت سطوح ترمیم شده خود نیز سبب محافظت از بتن زیر آن و هسته اصلی بتنی سازه، فلزات میلگردبندی، و پوشش بتنی میلگردها از محیط مضر می شود. همچنین کاهش عملکرد مورد نیاز برای دوام در برابر سایش، آب بندی و کاهش نفوذپذیری و افزایش مقاومت در برابر نیروهای زلزله، انفجار و آتش سوزی است.

شروع هر نوع عملیات ترمیمی، بهسازی و مقاوم سازی ابتدا نیاز به آماده کردن سطوح بتنی زیر کار دارد که ممکن است نیاز به کنده کاری توسط وسایل مکانیکی، با قلم و چکش، وسایل بادی، آب پاشی، بتن پاشی، ماسه پاشی، و تخریب یا پیشگیری یا به کارگیری مواد شیمیایی باشد.

روش ها و سیستم های آماده سازی سطوح بتنی مورد نیاز به تعمیرات، بهسازی و یا مقاوم سازی شامل؛ روش های ترمیم دوباره سازی سطوح بتنی، زیر سازی بتنی، شکل دهی، ملات های پایه سیمانی اجرا به وسیله دست، ترمیم بتنجایدهی شده در کارگاه، بتن پاشی که بعضی اوقات سطح وسیعی از سازه نیاز به تخریب و جایگزینی دارد.

روش های ترمیم حفاظت

روش های حفاظتی برای افزایش دوام و طول عمر خدماتی سازه توسط حفاظت از تهاجم شرایط محیط مضر مبتنی بر ملزومات طراحی. سیستم های بسیار زیادی در دسترس هستند که به شکل های مختلف مانند پوشش دهنده ها، علایق کننده ها،‌ ورق های محافظ، روکش ها، حفاظت کاتدی، و پوشش دهنده های رویه سطح به کار می روند.

 

روش های ترمیم آب بندکاری

تمام پیشروی های خرابی ها و سازوکار خرابی توسط آب و نفوذ آن است.

روش های آب بندی و جلوگیری کننده از نفوذ آب و انتشار آب به درون سازه از طریق ترک ها، درزها، و نقصان های واتر استاپ ها به درون سازه است که می توان از پوشش آب بندی پلیمری یا الاستومری استفاده نمود که می توان آن را در بخش محصولات وب سایت کلینیک بتن ایران و در قسمت محصولات آب بندی روئیت کرد

سیستم هایی طراحی شده اند که شامل جایگزینی، درزگیری، ورق های آب بندکننده، تزریق گروت درون درزها، اضافه کردن افزودنی ها به بتن، اندودکاری و غیره اند.

 روش های ترمیم مقاوم کردن

فرایند افزایش ظرفیت به اعضا و یا کل سازه را مقاوم کردن می نامند. روش های این فرایند مانند اضافه کردن فلزات، پیش تنیده، پس تنیده، جا دادن الیاف مختلف، سیستم کامپوزیت های الیافی، بتن های ویژه و یا اضافه کردن مواد نوین به مانند گروت ها و ترمیم کننده های اپوکسی و الیاف frp  و رزین های اپوکسی جهت مقاوم سازی به سازه های موجود برای افزایش مقاومت و ظرفیت سازه مورد نظر است.

 

فرایند افزایش ظرفیت به اعضا و یا کل سازه را مقاوم کردن می نامند. روش های این فرایند مانند اضافه کردن فلزات، پیش تنیده، پس تنیده، جا دادن الیاف مختلف، سیستم کامپوزیت های الیافی، بتن های ویژه و یا اضافه کردن مواد نوین به مانند گروت ها و ترمیم کننده های اپوکسی و الیاف frp  و رزین های اپوکسی جهت مقاوم سازی به سازه های موجود برای افزایش مقاومت و ظرفیت سازه مورد نظر است.

شاخص های ترمیم ستون بتنی


بجز ستون هایی که با انتقال بارهای قائم و با استفاده از شمع بندی کناری قبل از اجرای ترمیم ستون، باربرداری شده اند، این ناممکن است که ترمیم های جدید هم باری را حمل کنند، به ویژه اگر ترمیمنشان دهنده جمع شدگی ناشی از خشک شدن باشد. متاسفانه این برای برداشتن بار ستون ها، مخصوصاً در ساختمان های بلند، پر هزینه و مشکل ساز است.

 توزیع مجدد بار

توزیع مجدد بارهای قائم در مجاورت میلگردهای فولادی خورده شده اتفاق می افتد و به لایه لایه شدن قبل از به کارگیری ترمیم منجر می شود. طراح باید از این مطلب مطلع باشد و ارزیابی دقیقی از مقطع باقیمانده برای باز توزیع بار و احتمال تنش بیش از میزان طراحی ستون داشته باشد. همچنین بهتر است حداقل بخشی از بار ستون قبل از عملیات ترمیم آزاد شود.

 میلگردهای فولادی قائم مکمل

میلگردهای فولادی قائم مکمل باید به طور معمول در خاموت های ستون، مشابه یک شبکه جایدهی شود. انجام دادن این مورد بدون برش خاموت های ستون، مشکل است. پیمانکار نباید خاموت های ستون را برای اطمینان از عدم تحمل بار میلگردهای فولادی مسلح کننده قائم، برش دهد. بنابراین، معمولاً جایدهی میلگردهای مسلح کننده اضافی د وجه بیرونی شبکه، با احتیاط صورت می گیرد 

 برداشتن بتن

برداشتن بتن درون شبکه ستون، به ویژه در امتداد طول میلگردهای مسلح کننده قائم، با دقت کنترل شود. وقتی مقدار زیادی بتن از درون شبکه برداشته می شود، میلگردهای قائم شروع به کمانش می کنند. به علاوه برداشتن بتندر هر ستون بارگذاری شده در طول مراحل ترمیم، منجر به این می شود که بتن های باقیمانده و میلگردهای مسلح کننده سعی در تحمل بارهای قائم کنند. اگر دقت نشود، میلگردهای قائم کمانش می کنند و موجب گسیختگی ستونمی شوند.

 مسلح کننده فولادی خورده شده

با اضافه کردن میلگردها باید طول و هم پوشانی آنها به منظور به هم پیوستگی مناسب مهیا شود و در کل مساحت مقطع بعد از ترمیم به هیچ گونه، بخش زنگ زده و خورده شده میلگردهای مسلح کننده نباشد. میلگردهای تکمیلی در بخش های خراب شده به جای میلگردهای مسلح کننده خورده شده در بخش از دست رفته جایگزین و هم پوشانی می شوند. هر میلگرد خورده شده که در محل وجود دارد باید به طور کامل با ماسه پاشی برای آشکار شدن فلز، تمیز شود.

فولاد مسلح کننده مکمل

وقتی میلگردهای مکمل در قسمت بیرونی خاموت ها قرار گرفتند، ابعاد ستون ها برای مهیا کردن پوشش کافی، ازایش داده شوند. در ضمن خاموت های با قطر کم معمولاً از فولاد ضد رنگ، به منظور حمایت میلگردهای مکمل پهلویی (مجاور)، اضافه می شوند.که در انجام نیز در صورت نیاز میتوان از گروت اپوکسی جهت ترمیم نیز استفاده نمود

 خاموت های خورده شده

اگر ترمیم ستون ها به علت خوردگی خاموت ها باشد، مهم است که روش های جایگزینی برای حمایت جانبی میلگردهای قائم مهیا شود. این مورد می تواند با اضفه کردن خاموت های فولادی ضد رنگ با قطر کم که به داخل بتن انکر می شوند، انجام شود. اغلب ضروری است که با دقت پوشش روی خاموت ها مهیا شود. گرایش به کمانش در میلگردهای قائم مشکلاتی ایجاد می کند که با این روش از این مشکلات جلوگیری

می شود.

 بتن با مقاومت کم

در جایی که بتن مقاومت کمی دارد، ظرفیت حمل بار ستون ناکافی است. برای جبران این موارد چندین راهکار وجود دارد.

شمع بندی و افزایش اندازه ستون برای کاهش تنش های چسبندگی. بنابراین سختی محور ظرفیت حمل بار افزایش می یابد.
پوشاندن ستون با کربن، شیشه مسلح شده و یا پلاستیک
نصب ستون مکمل 

 


موارد کاربرد آب گریز نما سیلیکونی

آب گریز نما سیلیکونی جهت ضد رطوبت واترپروف کردن سطوح بتنی، آجری، سنگ که در نمای خارجی ساختمان به کار برده می شود.

 

زایای آب گریز نما سیلیکونی

آب گریز نما سیلیکونی پس از اجرا کاملا بیرنگ شده و به هیچ عنوان در زیبایی پوشش اجرا شده ساختمان تاثیری ندارد و آن را شفاف می نماید.

آب گریز نما سیلیکونی از شوره زدن نمای خارجی ساختمان جلوگیری می کند.

آب گریز نما سیلیکونی قابل شستشو بوده و پس از خشک شدن آب گریز نما سیلیکونی با آب حل نمی شود.

آمده به مصرف بودن آب گریز نما سیلیکونی و به آسانی قابل اجرا می باشد.

روش مصرف آب گریز نما سیلیکونی

هنگام کار با آب گریز نما سیلیکونی سطح موردنظر را از هرگونه گرد و غبار و چربی تمیز نموده و سپس آب گریز نما سیلیکونی را به وسیله قلم مو و یا پیستوله بر روی آن اجرا کنید به طوریکه تمام سطح را پوشش دهد. برای اطمینان بیشتر و کیفیت مطلوب تر، بهتر است آب گریز نما سیلیکونی را در دو نوبت به فاصله زمانی 2 تا 4 ساعت اجرا نمایید.

مشخصات فنی آب گریز نما سیلیکونی

میزان مصرف آب گریز نما سیلیکونی یک کیلوگرم آب گریز نما سیلیکونی سطحی معادل 10 مترمربع را در یک لایه پوشش می دهد.

آب گریز نما سیلیکونی مایع می باشد .

رنگ آب گریز نما سیلیکونی سفید است .

حلالیت آب گریز نما سیلیکونی: حلالیت آلی (تینر)

آب گریز نما سیلیکونی قابلیت مصرف از 5+ تا 35+ درجه سانتیگراد را دارد .

شرایط نگهداری آب گریز نما سیلیکونی

آب گریز نما سیلیکونی به دور از سرما و گرما در بسته بندی اولیه و در بسته به مدت یکسال قابل نگهداری می باشد .