کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

آسیب دیدگی به وسیله چرخه ی انجماد و ذوب شدن آب در بتن

چرخه‌ی انجماد و ذوب شدن، یکی از عوامل متداول در آسیب دیدگی بتن در مناطق سردسیر است. برای رخ دادن این نوع آسیب دیدگی، سه فاکتور زیر باید موجود باشند:

دمای هوا تا حد انجماد و ذوب شدن تغییر کند
بتن در تماس با آب و یا در معرض رطوبت باشد
تخلخل بتن نامناسب باشد
همان‌طور که احتمالا می‌دانید، آب ویژگی خاصی دارد که در هنگام منجمد شدن، بر عکس بقیه‌ی مایعات حجمش افزایش پیدا می‌کند. در حضور تمامی این 3 فاکتور، آب در داخل بتن یخ می‌زند و حجمش 9 درصد افزایش پیدا می‌کند. این افزایش حجم، باعث ترک خوردن و انفصال بتن می‌گردد. بعد از ذوب شدن آب، جا برای ورود مقدار آب بیشتری فراهم می‌شود و در نوبت بعدی انجماد آب، بتن بیش از پیش آسیب می‌بیند. این چرخه مدام تکرار می‌شود و هر بار، آسیب بیشتری به بتن وارد می‌شود؛ به همین دلیل به آن آسیب دیدگی به وسیله‌ی چرخه‌ی انجماد و ذوب شدن آبمی‌گویند.

 

نرخ پیشرفت آسیب دیدگی به وسیله‌ی چرخه‌ی انجماد و ذوب شدن آب، به تعداد چرخه‌ها، دما در هنگام انجماد،تخلخل بتن و شرایط محیطی بتن بستگی دارد.

همانطور که قبلاً نیز به آن اشاره کردیم، استفاده از سنگدانه‌های بی‌کیفیت هم می‌تواند در رخ دادن این نوع آسیب دیدگی موثر واقع شود. سنگدانه‌های بی‌کیفیت و نامناسب، می‌توانند آب را جذب کنند و سپس در چرخه‌ی انجماد و ذوب شدن آب ترک بخورند.

در دهه‌ی چهل میلادی، تحقیقات گسترده برای جلوگیری از آسیب دیدن بتن به وسیله‌ی انجماد و ذوب شدن آب آغاز شد. سد انگستورا (Angostura) نخستین سازه‌ای بود که در آمریکا ساخته و در آن تدابیری برای مقابله با این نوع آسیب دیدگی تدارک دیده شد. بدین صورت که با اضافه کردن مواد حباب‌زا به مخلوط بتن و ایجاد حباب‌های هوا در آن، فضایی برای افزایش حجم آب در هنگام انجماد در نظر گرفته شد. در این صورت، چرخه‌ی انجماد و ذوب شدن آب، کم‌ترین آسیب را به بتن می‌زند، مگر این که شرایط آب و هوایی ویژه باشد یا سنگدانه‌ها دارای کیفیت و مرغوبیت مناسب نباشند.

این نوع آسیب دیدگی اکثراً در بتن‌های قدیمی دیده می‌شود؛ در ساخت و سازهای جدید، با استفاده از مواد حباب‌زا دربتن، آسیب دیدگی به وسیله‌ی انجماد و ذوب شدن آب به حداقل رسیده است.

برای جلوگیری از آسیب دیدگی بتن‌هایی که در معرض چرخه‌ی انجماد و ذوب شدن آب قرار دارند، از مواد ویژه‌ای استفاده می‌کنند تا جذب آب بتن به حداقل برسد و از پیشروی آسیب دیدگی بتن جلوگیری شود.

ترمیم بتن آسیب دیده به وسیله‌ی چرخه‌ی انجماد و ذوب شدن آب، معمولاً با جایگزینی بتن صورت می‌گیرد. آزمایش‌ها و تجربه نشان داده است که ترمیم‌های مختصر و کوچک، پاسخگو نیستند و دوباره به وسیله‌ی همین عامل آسیب می‌بینند. بسیار مهم و حیاتی است که ترمیم انجام شده، ضخامت کافی را برای جلوگیری از وقوع این نوع آسیب دیدگی در آینده را دارا باشد. در غیر این صورت، آسیب دیدگی ادامه پیدا خواهد کرد و ترمیم دوام چندانی نخواهد داشت.

 

 

 


ضد آب کردن بتن با فناوری کریستالی ( آببندی)


مواد شیمیایی کریستالی بتن مقاومت بتن را بهبود بخشیده , هزینه های نگهداری را پایین آورده و دوره استفاده از بنا ر ا افزایش می دهند.

از پی , کف طبقات و پانل های پیش ساخته بتونی خارجی تا بناهای آبی و زیربناهای شهری , بتن یکی از عمومی ترین مصالح مورد استفاده در ساخت و ساز می باشد. هرچند از ترکیب دانه های سنگی , سیمان و آب ناشی می شود, ولی اغلب مستعد خرابی با نفوذ آب و ترکیبات شیمیایی می باشد.

این تاثیرات مخرب را می توان با استفاده از فناوری ضد آب کردن کریستالی دور کرده و پایایی و دوامساختار بتنی را بهبود بخشیده و با این وسیله هزینه های نگهداری دردراز مدت را کاهش داد. این مقاله چگونگی اجرای یک سطح عالی را با مخلوط های بتن , مواد و ترکیبات سبک توضیح داده و چگونگی اقتصادی بودن این روش را به طراحان حرفه ای نشان میدهد.

طبیعت بتن

ماده اصلی پرکننده در یک ترکیب بتنی دانه های سنگی می باشد که ماده چسباننده حاصل از ترکیب آب و سیمان , آنها را به یکدیگر میدوزد.زمانی که اجزاء سیمان هیدراته می شود ویا با آب ترکیب میگردد , آنها تشکیل سیلیکات کلسیم هیدراته را می دهند که این ترکیب همانند یک توده صلب سخت می گردد.

بتن یک ترکیب آبی است . برای ساخت این ترکیب کارا و پیوسته و یکپارچه از آبی بیشتر از مقدار لازم برای هیدراتاسیون سیمان استفاده میگردد. این آب اضافی که برای روانی بتن استفاده می شود از منافذ و شیارهای نازک بتن بیرون می آید. با وجود اینکه بتن ظاهرا یک جسم صلب و سخت شده است , ولی یک جسم متخلخل و نفوذپذیر می باشد.تقلیل دهنده های آب و فوق روان کننده ها به منظور کاهش مقدار آب در مخلوط بتن و افزایش کارایی آن بکار میروند , با این وجود منافذ , سوراخها و مسیر های نفوذی در بتن سالم , باقی می مانند و می توانند آب و مواد شیمیایی مهاجم را به عناصر سازه ای انتقال داده و باعث پوسیدن فولاد مسلح کننده و تخریب بتن گردند. که با این وجود بی نقصی سازه به خطر خواهد افتاد.

خاصیت نفوذپذیری و تخلخل بتن

بتن بهترین نمونه برای توصیف یک ماده نفوذ پذیر و متخلخل است.تخلخل مقدار منافذ و سوراخهای داخل بتن می باشد که با درصدی از مجموع حجم ماده نشان داده می شود. نفوذپذیری نیز بیانی از چگونگی ارتباط میان منافذ می باشد. این خاصیت ها به کمک یکدیگر اجازه تشکیل مسیری برای انتقال آب به درون ماده را همراه با ایجاد شکافی که هنگام انقباض بوجود می آید , میدهد.

نفوذپذیری مدت زمان انتشار از منافذ , توانایی عبور آب در فشار بین منافذ ماده می باشد.نفوذپذیری با یک مقدار مشخص مثل ضریب نفوذپذیری توضیح داده می شود و عموما به ضریب "دارسی" باز می گردد. نفوذپذیری آب در یک ترکیب بتنی شاخص خوبی برای سنجش کیفیت کارایی بتن است . ضریب "دارسی" کم نشان دهنده غیر قابل نفوذ بودن و کیفیتی بالا برای مصالح می باشد.با اینکه یک بتن با نفوذپذیری کم نسبتا مقاوم می باشد , اما ممکن است هنوز نیاز به ضدآب کردن برای جلوگیری از نشت میان شکاف ها وجود داشته باشــــد.

با وجود دانسیته (تراکم) معلوم آن , بتن یک ماده نفوذ پذیر و متخلخل است که می تواند با جذب آب و برخورد با مواد شیمیایی متجاوز نظیر دی اکسید کربن , مونواکسید کربن , کلراید ها و سولفات ها و دیگر ترکیبات آنها به سرعت تباه شود. اما راه دیگری نیز وجود دارد که هر آبی می تواند به عمق بتن نفوذ پیدا کند .

جریان بخــار و رطوبت ناشی از آن

آب همچنان در قالب بخار همانند رطوبت نسبی انتقال می یابد . رطوبت نسبی همان آب موجود در هوا به صورت یک گاز محلول می باشد. زمانیکه دمای بخار آب بالا می رود , آب زیاد آن فشار بخاری ایجاد میکند . آب به صورت بخار نیز به میان بتن انتقال می یابد . مسیر جریان از فشار بخار زیاد , عموما منابع , به فشار بخار کم با یک فرایند انتشار می باشد . مسیر انتشار بسیار متکی بر شرایط محیطی است.

جریان انتشار بخار , زمانیکه اجرای ضد آب کردن در مکان هایی که فشار بخار آب موجود به صورت غیر یکنواخت می باشد , بحرانی است . چند نمونه از این موارد شامل :

- استفاده از پوسته ایی که در مقابل بخار بسیار کم نفوذپذیر است , مانند یک پوشش حرکتی روی یک بتن مرطوب [ ولو اینکه پوشش رویی خشک باشد ] در یک روز گرم , در اثر فشار بخار ، فشار موجود افزایش یافته و باعث طبله شدن یا تاول زدن بتن می شود.

- بکار بردن یک اندود یا بتونه برای دیوارهای خارجی یک بنا ممکن است در صورت بقدر کافی نفوذ پذیر نبودن بتونه در مقابل بخار , رطوبت را به داخل دیوارها انتقال دهد.

- استفاده از کف با قابلیت نفوذ پذیری کم در مقابل بخار روی یک دال شیبدار در محلهای زیر سطحی در برخورد با رطوبت بالا ممکن است باعث تورق (لایه لایه شدن ) کف گردد.

عموما یک بتونه یا پوشش کم نفوذ در برابر بخار نباید روی سطح داخلی یک بنا یا سازه قرار داده شود. فشار بخار یا فشار آب برای خراب کردن و یا طبله کردن اندود عمل خواهد کرد . بعضی از انواع پوشش ها و افزودنی های کاهنده آب در بتن حرکت بخار آب را به طور قابل ملاحظه ای اصلاح می کنند و بدین صورت اجازه می دهند از آنها در قسمت داخلی استفاده شود. مثالهای اولیه پوشش های ضد آب سیمانی و ملات های آب بند و مواد افزودنی بتن تقلیل دهنده نفوذ آب می باشند.

چگونگی عملکرد فناوری ضد آب کردن کریستالی

فناوری کریستالی دوام و کارایی ساختار بتن را بهبود بخشیده ، هزینه های نگهداری آن را پائین آورده و با محافظت کردن بتن در مقابل تاثیرات مواد شیمیایی مهاجم ، طول عمر آن را افزایش می دهد. این کیفیت کارایی بالا از راه کار با فناوری کریستالی منتج می گردد. زمانیکه فناوری کریستالی در بتن استفاده می گردد ، ضد آب کردن و دوام بتن را با پر کردن و مسدود ساختن منافذ ، شیارهای موئین ، شکافهای بسیار ریز و دیگر سوراخها بوسیله یک فرم کریستالی بسیار مقاوم حل نشدنی ، اصلاح می کند . این ضد آب بودن بر پایه دو واکنش ساده شیمیایی و فیزیکی اتفاق می افتد . بتن ماده ای شیمیایی است و زمانیکه ذرات سیمان هیدراته می شوند ، واکنش بین آب و سیمان باعث می شود [ بتن ] شروع به سختی کند ، توده ای صلب گردد.همچنین واکنشی شیمیایی با مواد پنهان داخل بتن اتفاق می افتد .

ضدآب کردن کریستالی ، مجموعه ای از مواد شیمیایی دیگر را در [ بتن ]جمع می کند . زمانیکه مواد شیمیایی اجزاء سیمان هیدراته شده و مواد شیمیایی کریستالی در حضور رطوبت قرار می گیرند ، واکنشی شیمیایی اتفاق می افتد ، محصول نهایی این واکنش ساختار کریستالی غیر قابل حلی می باشد .

این ساختار کریستالی فقط در مکان های مرطوب می تواند اتفاق بیفتد و بدین ترتیب در منافذ ، شیارهای موئین و ترک های ناشی از جمع شدگی بتن شکل خواهد گرفت . هرجایی نشت آب صورت پذیرد ضد آب کریستالی با پر کردن منافذ و سوراخها و شکافها ایجاد خواهد گردید.

زمانیکه ضد آب کریستالی در سطوح همانند یک پوشش یا همانند عملکرد پاشش خشک روی دال بتنی تازه بکار گرفته می شود ، فرایندی به نام انتشار شیمیایی رخ می دهد. طبق نظریه انتشار ، محلول با دانسیته بالا میان محلولی با دانسیته پائین جا خواهد گرفت تا این دو متعادل گردند .

بدین سان ، زمانیکه بتن قبل از اجرای ضد آب کردن کریستالی با آب اشباع می شود ، یک محلول با دانسیته شیمیایی کم بکار برده شده است و زمانیکه ضد آب کریستالی در بتن بکار گرفته می شود ، محلولی با دانسیته شیمیایی بالا روی سطح آن ایجاد می شود که فرایند انتشار شیمیایی را راه اندازی می کند ، ضد آب کریستالی با جابجا شدن میان [ محلول با دانسیته پائین ] به تعادل می رسد .

مواد شیمیایی ضد آب کریستالی میان بتن پخش شده و در دسترس اجزای سیمان هیدراته قرار میگیرد و اجازه می دهد واکنشی شیمیایی اتفاق افتاده ، یک ساختار کریستالی شکل گیرد و همانند ماده شیمیایی ادامه می یابد تا میان آب پخش گردد . این رشد کریستالی ، پشت مواد شیمیایی مهاجم شکل خواهد گرفت . واکنش تا جایی که ترکیب شیمیایی کریستالی آب را تمام کرده و یا آن را از بتن خالی کند ، ادامه می یابد .انتشار شیمیایی ، ترکیب بوجود آمده را در حدود 12 اینچ به داخل بتن انتقال می دهد . چنانچه آب فقط 2 اینچ در عمق بتن جذب شده باشد ، در این صورت ماده شیمیایی کریستالی فقط 2 اینچ پیشرفت خواهد کرد و سپس خواهد ایستاد .در صورت ورود مجدد آب به بتن از چند نقطه دیگر در آینده ، با واکنش شیمیایی مواد ، قابلیت پیشروی تا 10 اینچ دیگر وجود دارد .

بجای کاهش تخلخل بتن همانند تقلیل دهنده های آب و روان کننده بتن و فوق روان کننده بتن ، ماده کریستالی ، مواد پرکننده و مسدود کننده سوراخها را در بتن به منظور ایجاد یک بخش بی عیب و پایدار از سازه ، بکار می گیرد.فرم کریستالی در داخل بتن وجود دارد و به صورت نمایان در سطح آن نیست و نمی تواند بتن را سوراخ کرده و یا به صورت های دیگری نظیر اندودها و یا سطوح پوششی آن را خراب کند .ضد آب کریستالی در برابر مواد شیمیایی با PH بین 3 تا 11 در برخوردهای ثابت و 2 تا 12 در برخوردهای متناوب بسیار مقاوم می باشد. این ماده دمای بین 25 - درجه فارنهایت [ 32- درجه سانتی گراد ] و 265 درجه فارنهایت [ 130 درجه سانتی گراد ] را در یک حالت ثابت تحمل می کند .رطوبت ، نور ماوراء بنفش و میزان اکسیژن هیچگونه اثری بر روی توانایی عملکرد محصول ندارد .

ضد آب کریستالی محافظت در مقابل عوامل و پدیده های زیر راایجاد می کند:

مانعی برای تاثیرات CO ، CO2 ، SO2 ، NO2 ، گازهای خورنده و نیز کربناته شدن می باشد. کربناته شدن فرایندی است که گازهای خارجی پدیده خوردگی را در لایه های بتن ایجاد میکنند.آزمایش کربناتی نشان می دهد که افزایش شکل کریستالی جریان گازهای داخل بتن را کاهش می دهد . کربناتاسیون حالت قلیایی خمیر سیمان هیدراته شده را خنثی نموده و محافظت آرماتورها در مقابل خوردگی از بین میرود.

محافظت کردن از بتن در مقابل واکنش توده های قلیایی [ AAR ] با رد کردن آب به فرایند آنها در نتیجه واکنش توده ها

آزمایش انتشار گسترده یون کلراید نشان می دهد که ساختار بتنی که با ضد آب کریستالی محافظت گردیده است ، از انتشار کلراید ها جلوگیری می کند. این ساختار از فولادهای تقویتی بتن حفاظت کرده و از خرابی های ناشی از اکسیداسیون و انبساط آرماتورها پیش گیری می کند.

بسیاری از روش های سنتی حفاظت بتن نظیر اندودها و دیگر پوشش ها ، ممکن است در دراز مدت مستعد خرابی از آب و ترکیبات شیمیایی گردند در صورتیکه فناوری کریستالی منافذ و شیارهای ناشی از فرایند خودگیری و عمل آوری بتن را بسته و بتن را مقاوم می نماید.

انواع بناها و کاربرد مناسب فناوری کریستالی

فناوری حفاظت و ضد آب کردن کریستالی در دو شکل پودر و مایع وجود دارد. سه روش به کارگیری متفاوت شامل :

استفاده کردن بر روی یک ساختار موجود به عنوان مثال یک دیوار سازه ای یا یک دال کف

ترکیب مستقیم با مقدار بتن در کارگاه همانند یک افزودنی بتن

پاشیدن مثل یک پودر خشک ، کاربرد سبز یا بدون رطوبت ماده خشک روی سطح بتن

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

مدیریت کیفیت آب در مخزن سد طرق از طریق آبگیری انتخابی از محل خروجی های سد

چکیده :

آب دریاچه ها و مخازن سدها در مناطق معتدله، در برخی از فصول سال مانند تابستان و زمستان، در اثر تغییرات شرایط اقلیمی، دچار لایه بندی حرارتی می شود. حال آنکه در فصول پاییز و بهار آب این منابع دستخوش اختلاط می گردد. پدیده لایه بندی و اختلاط می تواند پارامترهای کیفی آب را در طول سال در ترازهای مختلف آبگیری شدیداً تحت الشعاع قرار دهند. لذا آگاهی از چگونگی تغییرات کیفیت آب در دوره های مختلف سال، می تواند کمک موثری را در انتخاب بهترین تراز آبگیری و در نتیجه مدیریت کیفی آب بنماید. در این مطالعه با استفاده از مدل هیدرودینامیکی یک بعدی DYRESM، لایه بندی کیفی آب سد طرق واقع در استان خراسان رضوی به لحاظ حرارتی و شوری در طی یک دوره 2 ساله شبیه سازی شده و مورد بررسی و ارزیابی قرار گرفت . نتایج حاصله نشان دادند که لایه بندی حرارتی در مخزن مذکور از اواسط فصل بهار تدریجاً شروع شده و در اواسط فصل تابستان کامل می گردد. در اثر این لایه بندی حرارتی که تا آخر تابستان ادامه می یابد، حداکثر اختلاف دما بین پایین ترین تراز و بالاترین تراز 12درجه سانتیگراد می باشد که این امر از نظر تغییر در خصوصیات فیزیکی، شیمیایی و بیولوژیکی آب بسیار حائز اهمیت است. در مورد شوری(TDS)، اگر چه میزان آن در لایه های مختلف آب مخزن تفاوتی را نشان دادند ولی این تفاوت قابل توجه نبوده و معادل 40 میلیگرم در لیتر می باشد. بر اساس نتایج حاصله از مدل، بهترین لایه آبگیری در دوره های گرم سال، در تراز 29 متری از کف و بدترین لایه ها از نظر کیفی، تراز سطحی و پایین ترین تراز است. در فصلهای پاییز و زمستان لایه بندی حرارتی تشکیل نشده و اختلاط کامل در مخزن انجام می گیرد. در این فصول میانگین دمای آب مخزن به ترتیب 12 تا 16 درجه ساتیگراد می باشد. در این دوره ها بدلیل اینکه کیفیت آب مخزن در تمام عمق یکنواخت است، انتخاب تراز آبگیری اهمیت چندانی نداشته و آبگیری از مخزن سد می تواند از هر ترازی انجام پذیرد.

واژه های کلیدی : کیفیت آب، لایه بندی حرارتی آب در مخازن، مدل DYRESM ، آبگیری از مخازن سد.
مقدمه :

تغییرات دما و توسعه لایه بندی دمایی در دریاچه های مناطق معتدله و مخازن سدهای بزرگ معمولاً در فصول زمستان و تابستان اتفاق می افتد و در این امر باعث از بین رفتن و خوردگی مخازن آب بتنی می شود که باعث از بین رفتن کاور رویه یا لایه نهایی در مخزن شده که نیاز به ترمیم و همچنین آب بندی مجدد دیده می شود لیکن باید در بتن ریزی های این مخازن دقت های لازم صورت گیرد که از افزودنی های بتن و همچنین واتر استاپ ها از نوع های مختلف پی وی سی یا واتر استاپ بنتونیتی جهت اجرای تقاطع لوله ها در مخازن استفاده گردد اما در ادامه بحث در طی این دوره ستون آب معمولاً به سه لایه عمودی مجزا شامل 1- اپیلیمنیون 2- متالیمنیون (ترموکلاین)و 3-هیپولیمنیون تقسیم می شود. این لایه بندی به علت تفاوت در چگالی آب (ناشی از اختلاف دما) در ترازهای مختلف حاصل می شود[1] . همچنین تغییر در چگالی آبهای ورودی و تنشهای ناشی از سرعت باد می تواند در ایجاد لایه بندی و عمق لایه اختلاط موثر باشد[2] . بدیهی است در فصولی که لایه بندی اتفاق می افتد، تغییر در درجه حرارت لایه ها، کیفیت فیزیکی، شیمیایی و بیولوژیکی آب مخزن را در ترازهای مختلف، تغییر می دهد[4] . دمای آب بر روی نوع و میزان فعالیت گونه های بیولوژیکی، انحلال گازها، سرعت واکنشهای شیمیایی و سرعت رسوب گذاری تاثیر می گذارد به طوری که به ازای افزایش 10 درجه سانتیگراد، کلیه سرعت واکنشهای شیمیایی و بیوشیمیایی دو برابر می شود. در فصل تابستان به علت بالا بودن درجه حرارت و شدت تابش نور خورشید، رشد جلبکها در لایه های سطحی به شدت افزایش می یابد که این امر می تواند کیفیت آب را از نظر رنگ ، بو و طعم دچار تغییرات زیادی نماید. از طرفی دیگر به دلیل کاهش انحلال اکسیژن در آب و زیاد شدن سرعت تجزیه مواد تجمع یافته در رسوبات، شرایط در ترازهای عمقی آب می تواند کاملاً بی هوازی شده و منجر به تشکیل ترکیبات مولد بوها و یا طعم نامطبوع گردد[9]. آبگیری از لایه های مذکور و انتقال این گونه آبها به تصفیه خانه های آب آشامیدنی نه تنها میزان مصرف مواد شیمیایی و هزینه های تصفیه را افزایش می دهد بلکه در برخی مواقع شکایت مردم را نیز به دنبال دارد. لذا با آگاهی از شرایط کیفی آب در لایه های مختلف مخزن، می توان بهترین لایه را از لحاظ کیفی تشخیص داده و اقدام به آبگیری از آن تراز نمود.

تاریخچه :

با توجه به لایه بندی آب در دریاچه ها و مخازن سدها و تاثیر این لایه بندی بر خصوصیات آب استحصالی از این منابع، مطالعات گوناگونی تا به حال در جهت بررسی و پیش بینی تغییرات پارامترهای کیفی آب این گونه منابع در فصول مختلف سال انجام گرفته است. در طی دو دهه اخیر مدلهای هیدرودینامیکی مختلفی جهت بررسی شرایط کیفی آب مخازن سد ها توسعه یافته است. در برخی از این مدلها مانند مدلهای Minilake و AQUASIM، تنوع داده های ورودی بسیار محدود و در نتیجه، خروجی های حاصله از دقت و درجه اطمینان کافی برخوردار نیست[3]. ولی در برخی دیگر از مدلها به دلیل در نظر گرفتن شرایط هیدرودینامیکی آب در مخازن، خصوصیات مورفومتری مخازن، عوامل متعدد آب و هوایی، خصوصیات کمی و کیفی آبهای ورودی و همچنین توانایی محاسباتی بالا، تجزیه و تحلیل ها با دقت بیشتری انجام پذیرفته و نتایج بسیار مطلوب تر و دارای درجه اطمینان بیشتری است. از جمله مدلها می توان از مدل هیدرودینامیکی DYRESM (1981Imberger and Patterson )، مدل جدید AQUASIM(2001Ristow and Hansford) و مدلهای Stefan (1982)، Orlab (1983)، Franch (1985)، Anonymous (1986)، Ptic (1986)، Martin (1988)، Vertanen (1994)، Herman (1996) نام برد[3]. مدلهای اخیر هر یک دارای مزایا و معایب خاصی هستند که کاربرد بهینه آنها را برای شرایط و موقعیت خاصی رقم می زند . در این میان مدل یک بعدی DYRESM (1981Imberger and Patterson ) با توجه به در نظر گرفتن تغییرات پارامترهای مختلف آب و هوایی و تاثیر آنها در شرایط حرارتی و شوری آب و بدلیل دارا بودن خصوصیاتی از قبیل دقت محاسباتی بالا، انجام شبیه سازی برای دوره های زمانی کوتاه مدت (روزانه) تا بلند مدت (چندین ساله)، امکان استفاده در هر شرایط آب و هوایی و اقلیمی و عدم احتیاج به کالیبراسیون، کاربرد وسیعی را در بررسی و پیش بینی خصوصیات کیفی آب دریاچه ها و مخازن سدها دارد[3] .

Han و همکاران (2000) با استفاده از مدل DYRESM اقدام به شبیه سازی دمایی مخزن سد Sau در اسپانیا نمودند. ایشان با استفاده از داده های دمایی موجود از مخزن سد، اقدام به تست مدل کرده و تأثیر ورودی و خروجی ها را در شرایط لایه بندی دمایی مخزن مورد برسی قرار دادند [3]. T. ASaeda و همکاران (2001) به منظور بررسی و کنترل جلبکها در مخزن سد Terachi در غرب کشور ژاپن، ازمدل DYRESM به همراه مدلCAEDYM استفاده نمودند [8]. Gideon Gal و همکاران (2003) نیز با استفاده از این مدل خصوصیات حرارتی دریاچه Kineret در اسرائیل را شبیه سازی نموده و نتایج حاصل از مدل را با داده های دمایی موجود از دریاچه مقایسه کردند. آنها شرایط حرارتی حاصل از شبیه سازی توسط مدل را با استفاده از تغییر پارامترهای تابش طول موج کوتاه ، سرعت باد و ضریب روشنایی مورد بررسی قرار دادند و متوجه شدند که حساسیت مدل نسبت به پارامتر ضریب روشنایی بیش از سایر پارامترها بوده است [7].

همچنین Lousie و همکاران (2006) جهت بررسی نقش گردش کربن ، نیتروژن و فسفر بر روی پارامترهای مختلف کیفی آب و چگونگی لایه بندی آنها در دریاچه Kineret از مدلهای DYRESM و CAEDYM استفاده نمودند[6].

Balistrieri و همکاران (2006) در تحقیقات خود در ارتباط با تغییرات دما و شوری دریاچه Pexter Pit در ایالت Nevada آمریکا، مدل DYRESM را به کار گرفتند. نتایج کار آنها که بر مبنای مقایسه خروجی های حاصل از شبیه سازی مدل با داده های دما و شوری اندازه گیری شده از دریاچه بود، نشان داد که مدل مذکور در انجام شبیه سازی دمایی و شوری آب از دقت بسیار بالایی برخوردار است [5].

روش تحقیق :

در این تحقیق تغییرات شرایط دمایی و شوری آب مخزن سد طرق در یک بازه زمانی 2ساله (1999- 1998) مورد ارزیابی قرار گرفت. سد طرق در 25 کیلومتری جنوب شرقی شهر مشهد و در طول جغرافیایی '43 59 و عرض جغرافیایی '13 36 واقع شده و در سال 1367 و با هدف بهره برداری از آب آن جهت مصارف شرب و کشاورزی و کنترل سیلابهای سالانه بر روی رودخانه طرق ساخته شد. خروجی های این سد شامل یک دریچه تخلیه در پایین ترین تراز مخزن و سه دریچه آبگیر در ترازهای 29 ، 38 و 51 متری از کف مخزن و یک سرریز نیلوفری در ارتفاع 58 متری از کف مخزن می باشد .

جهت بررسی شرایط کیفی آب از نظر حرارتی و شوری و چگونگی روند تغییرات آنها از مدل هیدرودینامیکی DYRESM استفاده شد. اطلاعات لازم هواشناسی شامل آمار روزانه دمای هوا ، تشعشع طول موج کوتاه ، درجه ابرناکی ، سرعت باد و میزان بارندگی از ایستگاه سینوپتیک مشهد (وابسته به سازمان هواشناسی) بدست آمد. همچنین داده های مربوط به ورودی های به مخزن، با توجه به اینکه مخزن سد طرق تنها از یک جریان ورودی سطحی (رودخانه طرق) تغذیه می گردد، از داده های ایستگاه هیدرومتری کرتیان (وابسته به وزارت نیرو) واقع بر رودخانه طرق که در 3 کیلومتری بالادست مخزن سد قرار دارد استفاده شد.

نتایج و بحث:

بررسی لایه بندی حرارتی در داخل مخزن :

نتیجه مدل در ارتباط با چگونگی لایه بندی حرارتی آب مخزن سد طرق در طی دوره 2 ساله 1998 تا 1999 در شکل 1 نشان داده شده است. با توجه به نتایج مدل، در ابتدای سال 1998 (شروع زمستان)، بدلیل اختلاط کامل آب مخزن، لایه بندی حرارتی تشکیل نشده و شرایط دمایی آب در تمامی ترازهای مخزن یکسان و بین 12 تا 14 درجه سانتیگراد متغیر بوده است. لایه بندی حرارتی در فصل زمستان زمانی تشکیل می شود که آب لایه سطحی به علت سرد بودن هوا به صفر درجه برسد و در اثر یخ زدگی سبک تر از لایه های عمقی گردد. اما چنان که در شکل 2 نمودار توزیع فصلی درجه حرارت هوا را در منطقه نشان می دهد، مشاهده می گردد، میانگین دمای هوا در زمستان 1998 حدود 2/4 سانتیگراد بوده است و لذا وجود شرایط دمایی بالای صفر درجه، از تشکیل لایه بندی زمستانه جلوگیری کرده است. با فرا رسیدن فصل بهار و افزایش دمای آب در لایه های سطحی، به تدریج فرآیند لایه بندی مخزن شروع شده و تا اواسط تابستان کامل می شود، این لایه بندی تا اواخر تابستان ادامه دارد. در دوره تکمیل شدن لایه بندی، حداقل دمای آب در لایه پایینی 12 درجه و حداکثر دما در بالاترین لایه 24 درجه سانتیگراد بوده است. میانگین اختلاف دما بین لایه های سطحی و لایه های پایینی در طی دوره لایه بندی 11 درجه سانتیگراد را نمایش می دهد. وجود اختلاف دما بین لایه های مختلف، برخصوصیات فیزیکی، شیمیایی و بیولوژیکی آنها اثر گذاشته و کیفیت آب را در لایه های مختلف متفاوت می سازد. به عنوان مثال در طی دوره تابستان، رشد جلبکها در تراز بالایی آب به میزان زیادی افزایش می یابد که این امر می تواند، رنگ ، بو و طعم آب استحصالی از این لایه ها را شدیدا تحت تاثیر قرار دهد. تدریجاً با فرا رسیدن پاییز و آغاز دوره سرما و کاهش دمای هوا و دمای آب ورودی به مخزن، مجدداً فرایند اختلاط بوقوع پیوسته و باعث یکنواخت شدن شرایط دمایی آب با میانگین 15 درجه سانتیگراد می شود.

فرایند لایه بندی حرارتی آب در سال 1999 نیز شبیه سال قبل تکرار شده، به صورتی که در فصل زمستان شرایط دمایی در تمامی ترازهای مخزن مشابه بوده و دامنه تغییرات آن بین 14 تا 16 درجه سانتیگراد تغییر کرده است. در این دوره نیز به دلیل وجود میانگین دمای فصلی بالای صفر درجه (7 درجه سانتیگراد)، لایه بندی زمستانه تشکیل نشده است. لایه بندی حرارتی در این سال از اواسط بهار تدریجاً آغاز شده و تا انتهای فصل تابستان ادامه پیدا نموده است. متوسط اختلاف دمای آب بین لایه های سطحی و لایه های پایینی در سال 1999 معادل 7 درجه سانتیگراد بوده که نسبت به سال قبل 4 درجه سانتیگراد کاهش را نشان می دهد. با توجه به شکل 1، در طی دوره لایه بندی حرارتی در این سال، حداقل درجه حرارت آب مخزن 14 درجه سانتیگراد در پایین ترین لایه، و حداکثر درجه حرارت 22 درجه سانتیگراد در بالاترین لایه اتفاق افتاده است.

انعکاس لایه بندی حرارتی آب مخزن به خوبی در تغییرات دمای آب در خروجیهای مختلف سد نمایان است. همان گونه که اشاره شد سد طرق دارای 4 خروجی در ترازهای صفر، 29 ، 38 و 51 متری از کف می باشد. در جدول 2 میانگین دمای ماهانه و فصلی آب در محل هر یک از خروجی های سد در طی دوره دو ساله مورد مطالعه خلاصه شده است. نتایج میانگین دمای آب در فصول زمستان را به ترتیب از پایین ترین آبگیر برابر 4/13 ، 7/13 ،2/14 و 9/14درجه سانتیگراد و در فصول پاییز برابر 3/15، 4/15 ، 7/15 و 8/15 درجه سانتیگراد نشان می دهند. در بررسی میانگین دمای تراز های آبگیری در هر یک از ماههای پائیز و زمستان نیز اختلاف قابل توجهی بین ترازها مشاهده نگردید. مقایسه دمای آب در ترازهای مختلف آبگیری در فصلهای پاییز و زمستان، بیان گر این واقعیت است که در این دوره ها به دلیل اختلاط کافی، آب مخزن شرایط دمایی و کیفیتی مشابه ای را در اعماق دارا می باشد و لذا می توان آبگیری را از هر ترازی انجام داد.

اما در فصول گرم سال (بهار و تابستان) با توجه به اختلاف زیاد دمای آب در ترازهای آبگیری، انتخاب لایه آبگیر از اهمیت ویژه ای برخوردار می شود. با توجه به جدول 2 میانگین دما در ترازهای آبگیر در فصول بهار ، از پایین ترین تا بالاترین لایه به ترتیب برابر 9/13 ،7/15 ، 9/17 و 4/21 درجه سانتیگراد و در فصول تابستان به ترتیب برابر 3/15 ، 3/19 ، 1/20 و 3/20 درجه سانتیگراد بوده است . با توجه به نتایج ارائه شده، بیشترین اختلاف دمای آب که همواره بین پائینترین و بالا ترین ترازهای آبگیری مشاهده می گردد، در ماه می سال 1998 و ماه ژولای سال 1999 اتفاق افتاده و به ترتیب برابر با 11 و 6 درجه سانتیگراد بوده است. اختلاف دمایی نسبتاً زیاد بین ترازهای آبگیری دال بر اینست که شرایط کیفی آب اعماق مختلف مخزن یکنواخت نبوده و برخی از ترازها نسبت به سایر ترازها از کیفیت بهتری برخوردارند. از نظر پارامتر حرارتی، در فصول بهار و تابستان، آب پائینترین لایه بهترین شرایط را بین ترازهای آبگیر دارا است اما به دلیل وجود رسوبات در کف مخزن و نیز احتمال تجزیه مواد آلی در شرایط بیهوازی، کیفیت آب در پائینترین تراز ممکن است از نظر رنگ، طعم و بو نامناسب باشد. لذا گزینه مناسب جهت آبگیری، خروجی تراز 29 متری است. در این تراز متوسط دمای آب در بهار 7/15 سانتیگراد و در تابستان 3/19 سانتیگراد می باشد و همچنین مشکلی به لحاظ تجمع رسوبات و ایجاد شرایط بی هوازی وجود ندارد.

بررسی لایه بندی شوری در داخل مخزن :

نقشه لایه بندی شوری آب مخزن سد طرق طی دوره 2 ساله مورد مطالعه در شکل 3 نشان داده شده است. با توجه به نتایج حاصله از مدل، در سال آبی 1998، شوری آب (TDS) در فصل زمستان به دلیل اختلاط کامل مخزن، در تمامی ترازها یکسان بوده و مقدار آن بین 310 تا 320 میلیگرم در لیتر تغییر کرده است. تدریجاً با شروع فصل بهار و آغاز دوره گرما، به دلیل لایه بندی حرارتی و نیز تغییر در شوری آب ورودی به مخزن، لایه بندی شوری نیز در داخل مخزن ایجاد گردیده است. به طوری که میزان غلظت املاح در لایه سطحی 260 میلیگرم در لیتر و در لایه پایینی مخزن320 میلیگرم در لیتر بوده است. میانگین اختلاف شوری آب در طی دوره لایه بندی بین لایه حداقل و لایه حداکثر حدود 35 میلیگرم در لیتر مشاهده شده است. در انتهای سال 1998 به علت کاهش دمای آب ورودی به مخزن و دمای هوا، فرایند اختلاط آب در مخزن اتفاق افتاده که نهایتا باعث یکنواخت شدن شوری آب در کل مخزن با میانگین غلظت املاح 310 میلیگرم در لیتر شده است. روند تشکیل لایه بندی شوری آب در سال 1999 مشابه سال 1998 مشاهده گردید. یعنی در آغاز فصل زمستان شرایط شوری در تمامی تراز های آب یکسان بوده و تدریجاً با حرکت به سمت فصول گرم سال (بهار و تابستان) لایه بندی شوری ایجاد گردید. همان گونه که در شکل 3 ملاحظه می شود شوری آب مخزن طی دوره دو ساله 1998 تا 1999 روندی افزایشی را داشته است. در آغاز سال 1998 مقدار املاح آب حدود 310 میلیگرم در لیتر بوده در حالی که در انتهای سال 1999 مقدار املاح به 360 میلیگرم در لیتر رسیده است که احتمالا ناشی از کاهش حجم آب ورودی و افزایش تبخیر در سال 1999 بوده است.

جدول 1 استانداردهای ارائه شده توسط سازمان جهانی بهداشت برای شوری آب (TDS) در مصارف آشامیدنی و زراعی آمده است. با توجه به استانداردها، مقدار مطلوب TDS برای مصارف آشامیدنی و زراعی ، 500 میلیگرم در لیتر و حداکثر مقدار مجاز آن1500 میلیگرم در لیتر می باشد. در حال حاضر، مقایسه نتایج طرح با استانداردها این حقیقت را نشان می دهد که علیرغم ایجاد لایه بندی های آب در فصول گرم، مقدار TDS مخزن همواره کمتر از 500 میلیگرم در لیتر بوده و برای مصارف آشامیدنی و زراعی مطلوب است. ولی چنانچه روند افزایش شوری مخزن در سالهای آتی نیز به دلیل کاهش بارندگی و افزایش تبخیر از سطح مخزن ادامه یابد، می تواند مشکلاتی را در امر مصارف فوق به همراه داشته باشد.

حداکثر اختلاف میانگین فصلی شوری در بین ترازهای آبگیری، مربوط به شوری آبگیرهای بالایی و پایینی است که در فصل بهار اتفاق افتاده و برابر با 27 میلیگرم در لیتر بوده است. بر اساس نتایج، بازه تغییرات ماهانه شوری آب در اعماق مختلف مخزن سد بین 275 تا 358 میلیگرم در لیتر بوده که بر اساس استانداردهای سازمان جهانی بهداشت برای مصارف زراعی و آشامیدنی، در محدوده مناسب واقع شده است و لذا مکان آبگیری از این مخزن، از نظرشوری آب خروجی اهمیتی را دارا نمی باشد.

نتیجه گیری:

نتایج حاصله از پیش بینی شرایط حرارتی و شوری توسط مدل DYRESMمی تواند راهنمای مناسبی در جهت آگاهی از شرایط کیفی آب مخزن سد طی دوره های مختلف باشد و در برنامه ریزیهای مدیریت بهره برداری مورد استفاده قرار گیرد. نتایج حاصل از شبیه سازی حرارتی مخزن سد طرق، توسط مدل مذکور نشان داد که در طول سال، تنها یک بار فرایند لایه بندی حرارتی آب، آن هم در فصول گرم سال به وقوع می پیوندد. لایه بندی حرارتی در مخزن سد طرق تدریجاً از اواسط بهار شروع و در اواسط تابستان به اوج رسیده و تا انتهای تابستان نیز ادامه دارد. در طول این دوره، حداکثر تفاوت در میانگین درحه حرارت لایه های اپیلیمنیون و هیپولیمنیون، 12 درجه سانتیگراد مشاهده گردید. وجود لایه بندی حرارتی نسبتاً پایدار باعث می گردد که خصوصیات کیفی آب (مانند رنگ، بو، طعم و ....) در لایه های مختلف مخزن بسیار متفاوت باشد. بر اساس نتایج، با شروع دوره سردی هوا و وقوع اختلاط در مخزن، تدریجا لایه بندی حرارتی از بین رفته و از اواسط فصل پاییز تا انتهای زمستان تفاوت قابل ملاحظه ای در دمای آب در اعماق مختلف مخزن مشاهده نگردید. روند تشکیل لایه بندی شوری آب نیز از نظر زمانی مشابه لایه بندی حرارتی بود. ولی میزان شوری در لایه های تشکیل شده تفاوت چشمگیری را نشان نداد و حداکثر به 35 میلیگرم در لیتر رسید. نتایج به دست آمده حاکی از آن است که اعمال مدیریت کیفی آب مخزن سد طرق در فصول بهار و تابستان از اهمیت ویژه ای برخوردار است. در این فصول آبگیری از دریچه مستقر در تراز 29 متری بهترین کیفیت آب را در اختیار قرار می دهد. در این دوره آبگیری از بالاترین تراز به دلیل رشد جلبکی زیاد و از پایین ترین تراز به دلیل تجمع رسوبات و ایجاد شرایط بی هوازی توصیه نمی گردد. در فصول پاییز و زمستان به دلیل اختلاط کامل آب مخزن، کیفیت آب استحصالی از تمامی آبگیرها شرایط یکسانی را دارد.

منابع :

1-Reynolds,C.S.1992. Daynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Arch Hidrobiol. Beih Ergbn. Limnol. 35,13-31.

2-Armengol. J., Crespo. M., Morgui. J. A., and Vidal. A. 1986. Phosphorus budget and forms of phosphoros in the Sau Reservoir sediment: an interpretion of the limnological record. Hydrobiologia. Vol. 143, pp 331-336.

3- Han. P., Armengol. J., Garcia. C. J., Comerma. M., Roura. M., Dolz. J., and Straskraba. M. 2000. The thermal structure of Sau Reservoir (NE: Spain): a simulation approach Ecological Modelling. Vol. 125, Iss. 2-3, pp109-122.

4-Ford. D. E., and Thornton, K.W. 1979. Time and length scales for the one-dimensional assumption and its relation to ecological models.Water Resources Res.,Vol. 15, pp113-120.

5-Balistrieri. L., Tempel. R. N., Stillings. L., and Shevenell. L. 2006. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA. Applied Geochemistry, Vol.21, Iss. 7, pp.1184-1203

6- Louise. C. B., Hamilton. D., Imberger. J., Gal. G., Gophen. M., Zohary. T., and Hambright K. D. 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling, Vol.93, Iss. 3-4, pp. 412-436.

7- Gal. G., Imberger. J., Zohary. T., Antenucci. J., Anis. A., and Rosenberg. T. 2003. Simulating the thermal dynamics of Lake Kinneret. Ecological Modelling, Vol.162, Iss. 1-2, pp. 69-86.

8- Asaeda. T., Pham. H. S., Nimal Priyantha. D. G., Manatunge. J., and Hocking. G. C., 2001. Control of algal blooms in reservoirs with a curtain: a numerical analysis. Ecological Eng., Vol.16, Iss. 3, pp. 395-404.

-گارندگان :شهناز دانش ، سعیدرضا خداشناس، مصطفی خیّامی

9- حمیدرضا توحیدی. 1377 . تحقیق در رابطه با عوامل موثر در تغییرات کیفی آب مخزن سد طرق و ارائه روشهای بهینه کردن آب دریاچه . کمیته تحقیقات کاربردی شرکت آب منطقه ای خراسان رضوی (وزارت نیرو ) .

 

نویسنده : کلینیک فنی و تخصصی بتن ایران|دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


مقابله با خوردگی فولاد در بتن

مسأله خوردگی فولاد در بتن از معضلات عمده کشورهای مختلف جهان است. این مسأله حتی در کشورهای پیشرفته همچون آمریکا، کانادا، ژاپن و بعضی کشورهای اروپایی هزینه های زیادی را برای تعمیر آنها به دنبال داشته است. به عنوان مثال درگزارش های بررسی پل ها در امریکا حدود 140،000 پل مسأله داشته اند. این مسأله در کشورهای در حال توسعه و در کشورهای حاشیه خلیج فارس بسیار شدیدتر بوده و سازه های بتنی زیادی در زمانی نه چندان طولانی دچار خوردگی و خرابی گشته اند. بررسی ها در این مناطق نشان می دهد که اگر مصالح مناسب انتخاب گردد، بتن با مشخصات فنی ویژه این مناطق طرح گردد، در اجرای بتن از افراد کاردان استفاده شود و سرانجام اگر عمل آوری کافی ومناسب اعمال شود، بسیاری از مسائل بتن بر طرف خواهد گشت. به هرحال برای پیشگیری در سال های اخیر روش ها و موادی توصیه و به کار گرفته شده است که تا حدی جوابگوی مسأله بوده است.

استفاده از آرماتورهای ضدزنگ و نیز آرماتورهای با الیاف پلاستیکی FRP یکی از این روش ها است که به علت گرانی آن هنوز کاملا توسعه نیافته است. به علاوه عملکرد دراز مدت این مواد باید پس از تحقیقات روشن گردد.

از روش های دیگر کاربرد حفاظت کاتدیک در بتن می باشد با استفاده از جریان معکوس با آند قربانی شونده می توان محافظت خوبی برای آرماتورها ایجاد نمود. این روش نیاز به مراقبت دائم دارد و نسبتا پرخرج است ولی روش مطمئنی می باشد.

برای محافظت آمارتور در مقابل خوردگی، چند سالی است که از آرماتور با پوشش اپوکسی استفاده می شود. تاریخچه مصرف این آرماتورها بویژه در محیط های خورنده نشان می دهد که در بعضی موارد این روش موفق و در پاره ای نا موفق بوده است. به هرحال اگر پوشش سالم بکار گرفته شود با این روش می توان حدود 10 تا 15 سال خوردگی را عقب انداخت.

استفاده از ممانعت کننده ها و بازدارنده های خوردگی بتون نیز به دو دهه اخیر برمی گردد. مصرف بعضی از این مواد همچون نیترات کلسیم و نیترات سدیم جنبه تجارتی یافته است. به هر حال عملکرد این مواد در تاخیر انداختن خوردگی در تحقیقات آزمایشگاهی و نیز در محیط های واقعی مناسب بوده است. بازدارنده های دیگری از نوع آندی و کاتدی مورد آزمایش قرار گرفته اند ولی دلیل گرانی زیاد هنوز کاربرد صنعتی پیدا نکرده اند.

برای محافظت بیشتر آرماتور و کم کردن نفوذپذیری پوشش های مختلف سطحی نیز روی بتن آزمایش و به کار گرفته شده است. این پوشش ها که اغلب پایه سیمانی و یا رزینی دارند با دقت روی سطح بتن اعمال می گردند. عملکرد دوام این پوشش به شرایط محیطی وابسته بوده و در بعضی محیط ها عمر کوتاهی داشته و نیاز به تجدید پوشش بوده است. روی هم رفته پوشش های با پایه سیمانی هم ارزانتر بوده و هم به علت سازگاری با بتن پایه پیوستگی و دوام بهتری در محیط های خورنده و گرم نشان می دهند.

با پیشرفت روزافزون انقلاب تکنولوژیک به ویژه در تولید بتن های خاص و همچنین با وجود افزودنی های بتن در مناطق و شرایط خاص می توان از این بتن ها در ساخت وسازهای آینده استفاده نمود. دانش استفاده صحیح از مصالح، اجرای مناسب و عمل آوری کافی می تواند به دوام بتن ها در مناطق خاص بیفزاید. تحقیفات گسترده و دامنه داری برای بررسی دوام بتن های خاص در شرایط ویژه و در دراز مدت بایستی برنامه ریزی و به صورت جهانی به اجرا گذاشته شود.

نویسنده : کلینیک فنی و تخصصی بتن ایران|دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

شناسنامه ای از بتن ،بتن ریزی و افزودنی های بتن با نگاهی ساده


بتن اساسا از دو قسمت دانه های سنگی (Aggregates) و خمیر سیمان (Concrete) تشکیل شده است. خمیر سیمان که در واقع مخلوطی از سیمان پرتلند و آب می باشد.

- در اثر واکنش شیمیایی سیمان و آب روند سخت شدن ادامه یافته و در نتیجه دانه ها (ماسه و شن) را بصورت تودﮤ سنگ مانندی به یکدیگر می چسباند.

- دانه¬ها به دو گروه ریزدانه که تا ¼ اینچ (6میلیمتر) و درشت دانه که روی الک شماره 16 (1.18 میلیمتر) تقسیم می-شوند.

- خمیر سیمان عموما حدود 25 تا 40% کل حجم بتن را تشکیل می¬دهد که حجم مطلق سیمان بین 7 تا 15% و حجم آب از 14 تا 21% است. مقدار هوای در بتن تا حدود 8% حجم بتن را تشکیل می¬دهد این اندازه به درشت ترین دانه بستگی دارد.

- برای مصالح و شرایط عمل آوردن (Curing) معین، کیفیت بتن سخت شده به مقدار آب در مقابل با مقدار سیمان بستگی دارد.

مزایای کاهش مقدار آب

1-افزایش مقاومت فشاری و مقاومت خمشی

2- افزایش قابلیت آب بندی

(Water Tightness)

3-کاهش جذب آب (Absorption)

4-افزایش مقاومت نسبت به عوامل جوی

5- پیوستگی بهتر بین لایه های متوالی

6-چسبندگی بهتر میان میلگرد و بتن

7-کاهش تغییرات حجمی در اثر تر و خشک شدن

انواع سیمان پرتلند

نوع 1 : برای استفاده عمومی ومناسب برای همه کارها

نوع 2 : زمانی که احتیاطات علیه حمله سولفات ها مهم باشد

نوع 3 : با مقاومت زودرس که مقاومت های بالا را در مدت کوتاهی می دهد

نوع 4 : با حرارت هیدراسیون کم در جائی که میزان و حرارت تولید شده باید حداقل باشد

نوع 5 : در بتن هائی که در معرض شدید سولفاتها قرار دارن (ضد سولفات)

سیمان حباب زا (نوع A1، A2، A3) در برابر یخ زدن و آب شدن و همچنین پیوسته شدگی حاصل از اثرات مواد شیمیائی

برای از بین بردن یخ جاده ها مقاومت بهبود یافته ای دارند.

سیمان پرتلند سفید تفاوت بنیادی آن در رنگ می باشد

اختلاط
ترتیب 5 مادﮤ متشکله بتن در مخلوط کن نقش مهمی را در یکنواختی بتن خواهد داشت.

کنترل ترک

دو عامل اصلی برای ترک در بتن عبارتند از :

1- تنش بر اثر بارهای وارده

(Control joints)

2- تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)

شیوه جلوگیری

1- درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)

2-درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)

3-درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.

مواد افزودنی بتن

(Admixtures)

1-مواد افزودنی حباب زا بتن

(Air-entraining)

2- مواد افزودنی کاهنده آب بتن

(Water Reducing)
3-مواد افزودنی کندگیرکننده بتن

(Retarding)

4-مواد افزودنی تسریع کننده بتن
(Accelerating)
5-پوزولانها

6-مواد کارائی ساز شامل روان سازهای بتن

(Super Plasticizers)

7-مواد متفرقه مانند مواد پیوند ساز، ضد رطوبت، کاهنده نفوظ پذیری، دوغاب ساز و گاز ساز

بتن ریزی و پرداخت

تدارکات پیش از بتن ریزی

شامل متراکم کردن، درست شکل دادن، مرطوب نمودن سطح زمین ، بستن قالبها،قرار دادن آرماتورها و سایر اقلام کار

گذاشته شده بطور محکم در محلهای خود.

قالبها باید بطور دقیق قرار داده شوند وخود یا آستر آنها با مصالحی ساخته شده باشد که سرانجام نمای مطلوبی را به سطحبتن سخت شده ارائه کنند.قالبهای چوبی باید قبل از بتن ریزی مرطوب شوند در غیر اینصورت آب بتن را جذب کرده و متورم می شوددر استفاده از قالبهای چوبی باید از بکار بردن میخهای خیلی بزرگ یا به تعداد خیلی زیاد اجتناب ورزید تا برداشتن قالبها آسان شود و آسیب پذیری کاهش یابد.و برای سهولت در برداشتن قالبها باید آنها را با یک ماده رها ساز مانند روغن یا لاک آغشته کرد.

هنگامی که بتن ریخته می شود،میلگردهای فولادی باید تمیز بوده وعاری از زنگیا لایه اکسیده باشد. میلگردهای فولادی و سایر اقلام کار گذاشته که آغشته به ملات باشند، نیازی به .پاک کردن ندارند به شرطی که عملیات بتن ریزی در عرض چند ساعت پایان پذیرد.

ریختن بتن

بتن باید بطور پیوسته تا حد امکان در نزدیکی محل نهای خود ریخته شود.در اجرا دالها ، بتن ریزی باید در امتداد پیرامون انتهای دال آغاز شو د و هر پیمانه روی بتن ریخته شده قبلی تخلیه شود. عموما بتن در لایه¬های افقی با ضخامت یکنواختریخته شود وهر لایه باید قبل از ریختن لایه بعدی بطور کامل تراکم یابد. میزان بتن ریزی باید به اندازه کافی سریع بوده تا هنگام ریختن لایه جدید روی لایه قبلی ،آن لایه در حالت خمیری باشد . این امر باعث جلوگیری از خطوط جریان، درزها و سطوح سفحات ضعیف می شود کههنگام ریختن بتن تازه روی بتن سخت شده روی می¬دهد.

پیمانه های نخستین در هر مرحله بتن ریزی در دیواره ها و تیرهای اصلی باید در دو انتهای عضو ریخته شوند و سپس بتن ریزی های بعدی به سوی قسمت مرکزی پیش روند. در تمام حالات باید از جمع شدن آب در انتهاها، در گوشه ها جلوگیری شود.

-ارتفاع سقوط آزاد بتن نیازی به محدود شدن ندارد مگر اینکه جدائی درشت دانه ها رخ دهد که در آن صورت بتن از طریق بازشوهای پهلوئی موسوم به پنجره، که در اطراف قالبهای بلند و باریک وجود دارند، ریخته می شوند. در خارج بازشوها باید از یک مخزن قیفی شکل جمع شونده استفاده شود تا بتن امکان یابد آرام تر از کنا بازشو جریان یافته و تمایل به جدائی دانه ها کاهش یابد.

قبل از اینکه سطح بتن سخت شود بتن ریزی باید دوباره از سر گرفته شود تا بدینوسیله از ایجاد اتصال سرد جلوگیری به عمل آید.

متراکم کردن بتن

متراکم کردن عبارتست از نزذدیک ساختن ذرات جامد در بتن تازه به گونه ای که ریختن آن در قالبها و دور اقلام کار گذاشته شده و آرماتورها انجام گیرد و نیز محفظه های سنگی و هوای محبوس که بصورت حفره های هوائی اتفاقی یا تصادفی در بتن موجود است از بین برود.

تراکم بوسیله دست یا توسط روشهای مکانیکی صورت می گیرد. روش انتخاب شده بستگی به روانی مخلوط و شرایط بتن ریزی مانند، پیچیدگی قالب بندی و مقدار آرماتورها دارد. مخلوط های خمیری و روان را می توان بطور دستی با کوبیدن بتن با یک میله فولادی یا یک وسیله فولادی دیگر متراکم ساخت.

تراکم مکانیکی مناسب، بتن ریزی مخلوطهای سفت با نسبتهای آب به سیمان پایین و بتن های خوب حاوی درشت دانه های زیاد را امکان پذیر می سازد.

برداشتن قالبها ( باز کردن آنها)

قالبها راتا مادامی که بتون به اندازه کافی مقاومت پیدا نکرده تا بتواند به طور رضایت بخشی تنشهای ناشی از بار مرده و نیز هر گونه بار اجراییconstruction load وارده را تحمل کند،نباید برداشته شود.بتن باید به اندازه کافی سخت شده باشد به نحوی که وقتی دقت معقولی در باز کردن قالبها انجام شود هیجگونه آسیبی به به سطوح نرسد.به طور کلی برداشتن قالبهای مقاطع نسبتا ضخیم را می توان 12 تا 24 ساعت پس از بتن ریزی برداشت.در اغلب شرایط ، برای زمان برداشتن قالبها بهتر است که متکی به مقاومتی از بتن بوده که بوسیله آزمایش تعیین می شود

.

میله نوک تیز یا سایر ابزار فلزی را نباید جهت شل کردن قالبها میان بتن و قالب به زور گذاشته شود.اگر لازم باشد جدا کردن قالب از بتن با استفاده از گوه wedge انجام گیرد، فقط باید با گوه های چوبی بکار روند.

برداشتن قالبها باید از قسمتهای ساده آغاز شده وسپس به سوی قسمتهای پیش آمده پیشروی شود.این امر فشار وارد به گوشه های پیش آمده را کاهش می دهد.

لکه گیری، پاک کردن،وپرداختن سطوح قالب گیری شده

پس از برداشتن قالبها تمام برجستگیها،خطوط نشت،و پیش آمدگیهای کوچک باید به وسیله قلم زنی chipping از بین برده شود.سطح بتن سپس باید سابیده یا مالیده شود. هر گونه باید پر شود.سطوح کرمو باید مرمت شده و تمام لکه ها باید پاک شوند . با دقت در عملیات اجرای قالب بندی و بتن ریزی ، تمامی این عملیات به حداقل می رسد.

بتن کرمو ( خوردگی بتن ) و دیگر بتن های معیوب باید کنده شوند تا مصالح خوب و سالم پدید آید.

اگر بتن معیوبی مجاور محل لکه گیری شده باقی بماتد ،ممکن است رطوبت به درون خلل و فرج راه یابد و به مرور زمان عوامل جوی موجب کنده شدن بتن مرمت شده شود. لبه ها باید به طورمستقیم و عمود بر سطح ، بریده یا قلم زنی شوند ،یسا مقدار کمی تو بریدگی داده شوند تا زبانکی را در کنار جای لکه گیری شده فراهم سازد.

پیش از اعمال بتن لکه گیری ، بتن اطراف باید برای چندین ساعت خیس نگه داشته شود.تمام سطوحی که بتن جدید به آنها پیوند داده می شوند،باید بوسیله برس آغشته به چسب لاتکس یا چسب بتن سطح مورد نظر را با این مواد آغشته کرد و سپس با ترمیم کننده بتن سطح مورد نظر را بنا به کارشناسی که صورت گرفته شده از مواد ترمیم کننده بتن الیاف دار یا ساده پر کرد.

تکه های کم عمق را با ملات سفت مشابه آنچه کهدر بتن بکار می رود ،می توان پر کرد.لکه گیری باید لایه به لایه انجام شود. به گونه ای که ضخامت هر لایه بیشتر از13 میلی متر نبوده و نیز هر لایه به صورت مضر س پرداخت شود تا پیوند آن به لایه بعدی بهتر صورت گیرد. لایه نهایی را با استفاده از تخته ماله به نحوی پرداخت کرد که با بتن اطرهف خود همگون باشد

عمل آوردن تکه های لکه گیری شده

پس از لکه گیری، عمل آوردن باید تا جایی که ممکن است زودتر آغاز شودتا از خشک شدن زود هنگام جلوگیری شود . کرباس تر،ماسه خیس، نایلون را میتوان به کا برد.

عمل آوردن و حفاظت

عمل آوردن بتن تاثیر قوی روی خواص بتن سخت شده مانند دوام، مقاومت، آب بندی، مقاومت سایشی، ثبات حجمیو مقاومت در برابر یخ زدن وآب شدن دارد.

تمامی سازه های بتنی تازه ریخته شده، باید از خشک شدن سریع، از تغییرات شدید دما، و از آسیبهای ناشی از کارهای ساختمانی و عبور و مرور بعدی محفوظ بمانند.

عمل آوردن تا حد امکان باید بلافاصله پس از پایان کار بتنی آغاز شود.

عمل آوردن به دلایل زیر ضروری است :

نگهداری بتن تحت دمای ثابت و جلو گیری از افت رطوبت برای مدت زمانی که برای هیدراسیون مطلوب سیمان ونیز برای کسب مقاومت بتن لازم است.

بتون ریزی در هوای گرم

هوای گرم می تواند اشکالاتی زیر را در بتن تازه ایجاد کند :

-افزایش نیاز به آب

-افت سریع تر و شدیدتر اسلامپ بتن

-افزایش سرعت گیرش

-افزایش امکان ترک های پلاستیک

-اشکالات در کنترل مقدار حبابهای هوای بتن

-نیاز شدید به عمل آوردن سریع بتن

 

نویسنده :دپارتمان تحقیق و توسعه. کلینیک فنی و تخصصی بتن ایران((مشاور و تولید کننده محصولات افزودنی وارائه دهنده خدمات فنی و مهندسی بتن))