کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

کلینیک فنی و تخصصی بتن ایران

مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن – ارائه دهنده خدمات فنی و مهندسی بتن

فناوری‏های روز در تولید بتن


رئیس انجمن بتن ایران گفت: در برهه کنونی، لازم است تا فناوری‏های روز در تولید بتن بیشتر مدنظر فعالان عرصه ساخت و ساز قرار گیرد.هرمز فامیلی در آیین آغاز به کار دومین کنفرانس ملی صنعت بتن ایران در دانشگاه سمنان اظهار داشت: انجمن بتن ایران تاسیس شده است تا جلوی اشکالات موجود در استفاده از این ماده را بگیرد. وی تصریح کرد: اشکالات متعددی در زمینه استفاده سنتی از بتن در ساخت و سازهای انجام شده در کشور وجود دارد که باید اصلاح شود وبتن مرغوب و باکیفیت مورد استفاده قرار گیرد.

رئیس انجمن بتن ایران گفت: در انجمن بتن ایران فعالیت‏های متعددی در راستای ارتقای کیفیت مصالح ساخت بتن انجام گرفته و امروز شاهد نتایج مثبت این فعالیت‏ها در ساخت و سازهایی که در سراسر کشور انجام می‏شود، هستیم. فامیلی بیان داشت: معرفی و اجرایی شدن آیین‏نامه ‏های مربوط به کاربرد بتن یکی از مهم‏ترین مسائلی است که امروز باید بدان توجه شود.

رئیس انجمن بتن ایران افزود: در این حوزه و در راستای توجه دادن دست‏اندرکاران این بخش به اجرای آیین‏نامه‏های مربوط به کاربرد بتن سعی شده است تا برای اعضایانجمن بتن ایران دوره‏های مختلف آموزشی و تخصصی برگزار شود.

فامیلی بیان داشت: متاسفانه امروز در کشور شاهد هستیم که کیفیت پایین و دوام کم ساختمان‏های ایجاد شده با سازه‏ های بتنی در کشور رخ می‏نمایاند و باید در این زمینه فعالیت‏های اساسی صورت گیرد.

وی این مسئله را یکی از ضعف‏های اساسی در استفاده از بتن در ساخت و سازهای انجام شده در کشور بیان کرد. رئیس انجمن بتن ایران ادامه داد: امروز باید به گونه‏ای پیش برویم که استفاده از روش‏ها و فناوری‏های روز در تولید بتن بیشتر مدنظر قرار گیرد.

بارگذاری ساختمان (بتنی و فولادی)

بارهایی که روی ساختمان وارد می شوند یا مستقیمآ به وسیله طبیعت و یا به وسیله انسان ایجاد می گردند. به عبارت دیگر برای بار روی ساختمانها دو منبع اصلی وجود دارد، یکی ژئوفیزیکی و دیگری مصنوعی.

نیروهای ژئوفیزیکی را که نتیجه تغییرات مداوم در طبیعت هستند ممکن است به نیروهای جاذبه زمین، وزن ساختمان خودش ایجاد نیروهایی در سازه می کند که موسوم به بار مرده است واین بار در تمام طول عمر ساختمان ثابت باقی می ماند. اشکال همیشه در حال تغییر ساختمان نیز تایع اثرات جاذبه زمین است که ایجادتغییراتی در بارها در طول زمان می کند. بارهای ناشی از تغییرات جوی با زمان و مکان تغییر می کنند و به شکل باد، حرارت، رطوبت، باران، برف، و یخ ظاهر می شوند. نیروهای زلزله از حرکت نا منظم زمین یعنی زمین لرزه ایجاد میشوند.

منابع بارگذاری مصنوعی ممکن است تکان ناشی از حرکت اتومبیل ها، آسانسورها، ماشینهای مکانیکی و غیره و یا ممکن است تغییر مکان افراد، وسایل و یا نتیجه ضربه و انفجار باشند. به علاوه ممکن است نیروهایی در زمان تولید و اجرا در سازه به وجود آید. پایداری ساختمان ممکن است ایجاد پیش تنیدگی کند که باعث ایجاد نیرو در ساختمان می شود.

منابع بارهای ژئوفیزیکی و مصنوعی در ساختمان غالبآ به یکدیگر بستگی دارند. جرم، اندازه، شکل و مصالح یک ساختمان در روی نیروهای ژئوفیزیکی اثر می گذارند. برای مثال اگر عناصر ساختمان در مقابل تغییرات درجه حرارت و رطوبت نتوانند به آزادی واکنش نشان دهند و گیردار باشند نیروهایی در ساختمان ایجاد می شود.

برای اینکه اطمینان حاصل شود که مشکلات آتی از بین رفته و بازده سازه ای حاصل شده باشد لازم است که مطالعات دقیق جواب تئوری ساختمان به اثرها انجام گیرد. طراح باید نیروها و اثر بارگذاری مربوطه را درک کند تا ساختمان بی خطر و قابل استفاده باشد.

• بار زنده ساختمان

بارهای ناشی از نیروی جاذبه زمین را میتوان به دو دسته مجزا تقسیم کرد:

استاتیکی و دینامیکی: بارهای استاتیکی همیشه جزء ثابتی از سازه هستند. بارهای دینامیکی موقتی هستند یعنی با تغییر زمان و فصل تغییر می کنند، یا تابع مکان داخل یا روی سازه هستند.

بارهای مرده را ممکن است به صورت بارهای استاتیکی که در اثر وزن اجزاء سازه ایجاد می شوند تعریف کرد.نیروهایی که منجر به بار مرده می شوند عبارتند از: قسمتهای باربر ساختمان،کف،روکاری سقف، دیوارهای جدا کننده ثابت، پوشش نما، مخزنهای انباری، سیستمهای توزیع مکانیکی و غیره. مجموع وزنهای همه این قسمت ها بار مرده ساختمان را تشکیل می دهد.

به نظر می رسد که تعیین وزن مصالح و از آنجا بار مرده ساختمان کار ساده ای باشد. اما به دلیل مشکلات گوناگون در تجزیه و تحلیل دقیق بارها تخمین بارها ممکن است 15 تا 20 درصد و یا حتی بیشتر در خطا باشد.

در مرحله اولیه طرح برای مهندس محاسب پیش بینی دقیق وزن مصالح ساختمانی که هنوز انتخاب نشده اند کاری غیر ممکن است. مصالح ناسازه ای مشخصی که باید انتخاب شوند شامل صفحات پیش ساخته نما، لوازم روشنایی، قطعات سقف، لوله ها، مجرا ها، خطوط برق و اجزای نیازمندیهای داخلی خاص ساختمان می باشند.

وزن عناصر تقویت کننده و اتصالات در سازه های فولادی فقط به صورت درصدی از وزن کل تخمین زده می شود. وزن واحد حجم مصالح که به وسیله تولید کنندگان یا آئین نامه ها داده می شود همیشه با وزن واحد حجم محصول تولید شده مطابقت ندارد. اندازهای اسمی اجزاء ساختمان ممکن است با اندازه های واقعی اختلاف داشته باشد .

• بار زنده ساختمان

فرق اساسی بارهای زنده با بارهای مرده در این است که بارهای زنده متغیر و غیر قابل پیش بینی هستند. تغییر در بارهای زنده نه تنها در طول زمان اتفاق می افتد بلکه همچنین تابعی از مکان می باشد. این تغییر ممکن است در مدت زمان کوتاه یا طولانی صورت گیرد. بدین ترتیب تقریبآ غیر ممکن است که بارهای زنده را به صورتاستاتیکی تخمین زد. بارهایی که بوسیله اشیاء یا اشخاص در ساختمان ایجاد می شوند به نام بارهای سکنی موسوم هستند. این بارها شامل وزن اشخاص، مبل ها، جدا کننده های متحرک، گاو صندوق ها، کتابها و دیگر بارهای نیمه دائم و موقتی که روی ساختمان اثر می کنند ولی جزئی از سازه نیستند و جزء بار مرده به حساب نمی آیند .

بارهای متمرکز، نشان دهنده اثر بار منفرد ممکن در نقاط بحرانی مثل کفهای پله، سقفهای قابل دسترس، گاراژهای توقف و دیگر نقاط آسیب پذیر با تنشهای متمرکز زیاد می باشند.

• بار اجرایی ساختمان

اجزاء سازه به طور کلی برای بارهای مرده و زنده طرح می شوند. اما یک قطعه سازه ممکن است در موقع اجرای ساختمان تحت بارهایی خیلی بیشتر از بارهای طرح قرار بگیرد. اینگونه بارها که موسوم به بارهای اجرائی هستند قسمت مهمی را در طرح اجراء سازه تشکیل می دهند.

هر پیمانکاری در طول زمان روش اجرایی را توسعه می دهد که برای خودش اقتصادی بودنش ثابت شده است. هر چند که معمار ممکن است ساختمان را طوری طرح کند که برای یک روش اجرایی معینی مناسب باشد، او ممکن است که از روشهای اجرایی یکایک پیمانکاران آگاهی نداشته باشد. پیمانکاران معمولآ مصالح و وسائل سنگین را روی سطح کوچکی ازسازه انباشته می کنند. این عمل ایجاد بارهای متمرکزی میکند که خیلی بیشتر از بارهای زنده فرض شده برای سازه طرح شده می باشد .در چنین شرایطی شکست نتیجه شده است .

یک مشکل اساسی در اجرای سازه های بتنی وقتی ایجاد می شود که پیمانکار پایه های تقویتی و قالب بندی را قبل از انقضای مدت کافی برای عمل آمدن بتن بردارد. مقاومت بتن با زمان زیاد میشود. ولی از آنجایی که برای پیمانکار زمان پول است او ممکن است قالب ها را قبل از اینکه بتون به مقاومت حداقل طرح برسد بردارد. در چنین صورتی جزئی از سازه ممکن است تحت اثر بارهائی قرار بگیرد که قادر به تحمل آنها نباشد و شکست حاصل شود.

• بارهای برف ، باران و یخ

مشاهده ارتفاع و تراکم برف در طول سالیان دراز منجر به پیش بینی معقول حداکثر بار برف شده است. بار برف را لازم است فقط برای بامها و سطوح دیگر ساختمان که ممکن است برف جمع کننده از قبیل حیاط های بالا آورده شده، بالکن ها و سقف های آفتابگیر در نظر گرفت. بار برف که به وسیله آئین نامه ها تعیین شده است بر اساس حداکثر برف روی زمین می باشد. غالبآ این بارها بیشتر از بار برفی که روی بام اثر میکند می باشد. زیرا باد مقداری از برف های شل را از روی بام به دور می ریزد یا بدلیل از دست رفتن گرما از طریق بام، برف آب و بخار می شود. آئین نامه ها معمولآ در صدی از بار برف را روی بام شیب دار کم می کنند، زیرا روی چنین سطوحی برف به سهولت از روی بام به پائین می لغزد. ولی بعضی از انواع بام ها ممکن است روی رفتار باد اثر بگذارند و باعث شوند که بار برف به مقدار زیاد در یک قسمت از بام ذخیره شود.با وجود اینکه اغلب در محاسبه بار زنده به آب فکر نمی شود حتمآ باید در موقع طرح آنرا به خاطر داشت. بار باران به طور کلی کمتر از بار برف است، ولی باید به خاطر داشت که ذخیره شدن آب منجر به مقدار قابل ملاحظه ای بار می شود.

همچون که آب جمع می شود بام تغییر شکل داده خم می شود و این باعث می شود که آب بیشتری جمع شود و منجر به تغییر شکل زیاد تری گردد. این پدیده که موسوم به حوض شدن می باشد ممکن است باعث فرو ریختن نهایی بام شود.

یخ روی اجزاء بیرون آمده به خصوص روی قطعات تزئینی خارجی که در غیر این صورت جز بار وزنشان باری دریافت نمی کنند جمع می شود. از این رو لازم است که این قطعات چنان طرح و اتصال داده شوند که بارهای سنگین قندیل های یخ را تحمل کنند. به علاوه، تشکیل یخ روی سازه های خرپایی باز باعث ازدیاد سطح و وزن شده که منجر به اضافه شدن باد می شود.

• بار باد روی ساختمان

آسمان خراشهای اولیه به اثرات پیچیده نیروی جانبی ایجاد شده بوسیله باد آسیب پذیر نبودند.وزن عظیم ساختمان با دیوارهای باربر ساخته شده از مصالح بنایی چنان بود که نیروی باد قادر نبود به نیروهای جاذبه به زمین غلبه کند. حتی موقعی که روش دیوار حمال بوسیله سازه قاب صلب در اواخر قرن 19 جایگزین شد، نیروی جاذبه عامل تعیین کننده اصلی بود.

نماهای سنگی سنگین با بازشدگی های کوچک، ستونهای نزدیک به هم، قطعات سرهم شده حجیم قابها، و دیوارهای جداکننده سنگین هنوز چنان وزنی را ایجاد می کردند که عمل باد یک مشکل اساسی نبود.

آسمان خراشهای دیوار شیشه ای سالهای 1950 با فضای باز داخلی مطلوب و وزن نسبتا کم برای اولین بار در مقابل نیروهای باد واکنش نشان دادند.با معرفی قاب فولادی سبک وزن، دیگر وزن یک عامل محدود کننده ارتفاع آسمان خراشها نبود. ولی عصر ساختمانهای بلند با خود مشکلات جدیدی آورده است برای اینکه وزن مرده کاهش داده شود و فضاهای بزرگتر و انعطاف پذیر ایجاد گردد تیرهای با دهنه زیاد، جدا کننده های داخلی بار نبر متحرک و دیوارهای پیرامونی بارنبر ساخته شده است.همه این ابداعات از صلبیت کلی سازه ها کم کرده اند، به طوری که حالا سختی جانبی (با تغییر مکان جانبی) یک ساختمان ممکن است تعیین کننده تر از مقاومتش باشد. اثر باد یک مسئله اساسی برای طرح ساختمانهای بلند شده است . درک باد و پیش بینی رفتارش به صورت علمی دقیق ممکن است غیر ممکن باشد. عمل باد روی ساختمان، شکل، باریکی و ترکیب نمای سازه مورد نظر و نحوه قرار گرفتن ساختمانهای مجاور دارد.

• بار ناشی از تغییرات حجم مصالح

تغییرات حجم مصالح در اثر انقباض،غرش و آثار حرارتی به وجود می آید. موقعی که از واکنش طبیعی و آزاد اعضاء ساختمان در سر حد ها یشان جلوگیری می شود در آنها نیرو ایجاد میگردد. در جایی که این تغییرات حجم محدود می شود نقش های محوری و دورانی در ساختمان ایجاد گردد.

تغییر حجم تابعی از شکل و اندازه ساختمان، مصالح، سختی اعضاء سازه ای و نوع اتصالات می باشد. با به کار بردن مانع در نقاطی از ساختمان که تنش های محوری و دورانی ممکن است ایجاد شود می توان تغییرات حجم را کنترل کرد و این به معنی طرح اعضاء برای تحمل این نقش ها می باشد. واضح است که تغییرات حجم را با استفاده از درزهای انبساط که در آنها حرکت به آزادی صورت می گیرد می توان کنترل نمود.

• بار ناشی از انفجار

ساختمان ممکن است مجبور باشد نه تنها نیرو های فشاری خارجی بلکه نیروهای فشاری داخلی ایجاد شده در اثر انفجار را نیز تحمل کند. فرو ریختن قسمتی از یک ساختمان آپارتمانی در لندن در سال 1968 توجه زیادی را به این بار گذاری جلب نمود. اکثر ساختمانها هرگز با چنین نیروهایی مواجه نخواهند شد،ولی احتمال انجار مواد منفجره در اثر خرابکاری یا اشتعالتصادفی گازهای آتش گیر در اثر نشت یا آتش همیشه وجود دارد.

در اثر انفجارات فشارهای زیادی در منطقه انفجار ایجاد می گردد و بارهای خیلی زیادی به عناصر ساختمان وارد می شود که منجر به ترکیدن و به خارج پرتاب شدن پنجره ها، دیوارها و کف ها می گردد. این فشار داخلی باید به صورت موضعی محدود و کنترل شود و نباید باعث فروریختگی تدریجی ساختمان گردد.

علل ممکن برای بارهای انفجاری خارجی از غرش های صوتی نسبتآ کم اهمیت است (مانند پنجره های شکسته شده و دیوارهای گچی ترک خورده). تحقیقات وسیعی روی واکنش سازه ها در برابر اثرات سلاحهای اتمی در جریان است تا بتوان ساختمان را چنان طرح کرد که در مقابل حمله اتمی مقاوم باشند.

• ترکیب بارها روی ساختمان

ساختمانهای بلند درطول عمرشان در معرض بارهای متعدد می باشد و بسیاری از بارها به طور همزمان روی سازه وارد می شود.اگر بارها خط اثر مشترک داشته و با یکدیگر باید ترکیب شود. این شرط لازم می سازد که در طرح سازه ها تمام ترکیبات ممکن بارها در نظر گرفته شود.

احتمال وقوع بارهای ترکیب شده باید به طور آماری ارزیابی و اثر آن تخمین زده شود. هرچقدر که اثر بار با دقت بیشتری تعیین شود لزوم انتخاب ضرایب اطمینان بزرگتر برای جبران عوامل مجهول کاهش می یابد.

ترکیب موثر و عملی بارها در آئین نامه ها مشخص گردیده است. بطور کلی تشخیص داده شده است که ماکزیمم بالای ناشی از تغییرات جوی و زلزله احتمالا هرگز با مقدار کامل بارهای زنده دیگر همزمان رخ نخواهد داد از این رو موقعی که بار زنده کامل به طور همزمان با بارهای ماکزیمم باد یا زلزله به کار می رود آئین نامه اجازه می دهد که بر تنشهای مجاز 33 درصد افزوده شود.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


پیرامون بتن آب بند

بتن آب بند بدون هرگونه ترک خوردگی می باشد. برای ساخت بتن آب بند باید به چند نکته توجه کرد بطور مثال در بتن آب بند باید در طرح اختلاط دقت کرد میزان آب به سیمان و یا استفاده مواد افزودنی بتن نا مناسب و دیر مواردی همچون عمل آورنده بتن میزان سیمان و دانه های نا مناسب در ساخت بتن آب بند موثر می باشد. مطالبی که در مورد بتون آب بند بسیار مورد توجه قرار گرفته است و در ساخت بتن آب بند پرداخته شده طرح اختلاط بتن آب بند است، اما نکته دیگری که در ساخت بتن آب بند بسیار مهم می باشد نسبت اختلاط بتن است که می توان مقدار خلل و فرج های ایجاد شده در بتن آب بند را نسبت به موارد مورد نیاز افزایش یا کاهش داد که باعث کمتر مصرف شدن سیمان شود.

خلل و فرج موجود در در بتن آب بند مهم ترین عامل تضعیف آب بند بودن بتن می باشد و باید با کافی این مشکل را حل کرد. در ساخت بتن یا بتن آب بند در ایران چون مقدار سنگدانه های نرم در خاکهای معمولی موجود کم است، این کمبود را با ترمیم کننده جبران می کنند برای ساخت بتن آب بند باید توجه داشت ضعیف ترین و پر خلل و فرج ترین نقطه در بتن، نقطی می باشد ویبره کردن آن نقاط سخت می باشد مثل زیر آرماتور و سنگدانه های درشت. که در این نقاط خلل و فرج از بین نرفته و محبوس می شوند. می توان خود خمیر سیمان را در ساخت بتن آب بند متراکم کرد تا خلل و فرج در بتن از بین برود. این روش خلل و فرجی که در ژل بتن را از بین میبرد. استفاده از ژل میکروسیلیس، موجب ایجاد سیلیکات کلسیم محلول در آب می شود و نفوذ پذیری بتن آب بند را با کم کردن نقاط خالی بصورت بسیار مناسب کم میکند. چون دانه های موجود بسیار کوچک هستند و نقاط خالی را به خوبی پر میکنند و هرچه این خلل و فرج کم تر باشد بتن آب بند بهتری داریم. ژل میکروسیلیس مخصوص بتن آب بند به مقدار زیادی سیلیس دارد. نام دیکر آن ژل سیلیکا فیوم است. دانه های ژل میکروسیلیس بسیار ریز تر از دانه های سیمان است و با استفاده از ژل میکروسیلیس در بتن آب بند فاصله بین دانه های سیمان باهم و سیمان با سنگدانه ها را پر کرده و یک بتن یک دست تولید می شود. استفاده از پودر میکرو سیلیس در بتن آب بند به دلیل ریزی زرات و نرمی بیش از حد آن برایی استفاده کنندگان خطر ناک است. برای حل این مشکل ژل میکروسیلیس به بازار عرضه شده است.

برای ساخت بتن آب بند با کیفیت نانو سیلیس مطرح شد. ژل میکروسیلیس ساخته شده با نانو سیلیس همان فرمول ژل میکرو سیلیس را دارد در حالی که بسیار نرم تر و ریز تر از ژل میکروسیلیس است و واکنش قوی تری با آب دارد پس بتن آب بند بهتری بدست می آوریم. راه دیگر برای ساخت بتن آب بند استفاده از مواد حباب ساز و فیلر است. با افزودن مواد افزودنی حباب ساز به بتن آب بند قطر لوله های موئینه بتن کم می شود، دیواره داخلی آن ها لیز شوده و حالت دمپر ایجاد می شود. ضربات استاتیکی را جذب به خود جذب می کنند. در ساخت بتن بخصوص بتن آب بند هرچه نفوذپذیزی افزایش یابد بتن آب بند مقاومت و استحکام بیشتری می یابد اما الزاما بتن با استحکام بالا یک بتن آب بند و یا نفوذ ناپریز نیست. بتن ها از جنبه آب بند بودن طبقه بندی و رتبه بندی شده اند.

بتن آب بند رتبه یک کمترین نوع آب بندی بتن است که در این نوع بتن آب بند در سطح بتن می توان لکه های آب را دید، مانند قطره های آب که روی بتن به جای مانده باشد. برای تست این درجه آب بندی یک روزنامه خشک را به سطح بتن می چسباینم. اگر روزنامه خشکی و سفتی خود را از دست داد و خیس شد یعنی جسم بتن در آب غوطه ور است. برای از بین بردن این حالت دو گزینه وجود دارد. گزینه منفی این است که آب را از سطح بتن خشک کنیم و گزینه مثبت این است که از داخل بتن یک غشاءجای گذاری کنیم. در این حالت آب روی لایه آب بند فشار می آورد و جلوی ورود آب را می گیرد. عمل پلاستر کاری یعنی از مواد پلیمری یا اپوکسی بتن برای بتن روکش می گذاریم و آن را آب بند می کنیم.

جهت آب بند ساختن سازه های بتنی در درزهای اجرایی بتن آب بند واتر استاپ می گذاریم. 2 نوع واتر استاپ در سازه های بتنی استفاده می شود. واتر استاپ های تخت و واتر استاپ های انبساطی. قرار می دهیم

این روزها تمایل به ساخت بتن آب بند در سازه های بتنی غیر قابل نفوذ با ضخامت کم با رعایت نمودن ذکر شده زیاد می باشد که حداقل ضخامت بتن 15 سانتی متر بوده با شرط محدود نمودن عرض ترک ها. برای اطلاعات بیشتر و مشاوره برای ساخت و تو لید بتن آب بند و یا مواد افزودنی مورد نیاز برای بتن آب بند با کارشناسان کلینیک فنی و تخصصی بتن ایران تماس حاصل فرمایید.

نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


روغن قالب بتن


روغن قالب بتن یک نوع روغن شیمیایی رها کننده قالب بتن است که بر پایه مواد نفتی با استفاده از ترکیب روغنهاى مخصوص و مواد شیمیایى ساخته می شود بطوری که محلول در آب بوده و خواص برترى نسبت به روغنهاى قالب معمولى دارد. این روغن در واکنش با مواد شیمیایى موجود در بتون یک لایه نازک دافع آب در سطح قالب تشکیل می دهد و باعث جدا سازی آسان قالب از بتن مى شود و از قالبهاى چوبى و فلزى محافظت می کند. برای جلوگیری از چسبندگی قالب به بتن و کنده شدن بتن باید از روغن قالب استفاده کرد.

روغن، امولسیونی است که با ایجاد یک لایه نازک روی سطح قالب باعث سهولت جدا شدن قالب از بتن می شود. به همین منظور به هیچ وجه از روغن سوخته استفاده نمی شود.

خواص روغن قالب بتن: روغن قالب بتن باعث صاف و صیقلی شدن سطح بتن می شود. برای صرفه جویی در هزینه و زمان قالب بندی بتن از روغن قالب بتن استفاده می کنند. برای عدم نیاز به اعمال ضربات مکانیکی و افزایش عمر مفید قالب های بتن از روغن قالب بتن استفاده می کنند. روغن قالب بتن باعث قابلیت پوشش دهندگی مطلوب روی سطح قالب بتن می شود.

مزایا روغن قالب بتن: امکان استفاده از روغن قالب بتن برای انواع قالب های بتنی وقالب فلزی و قالب چوبی و قالبپلاستیکی وقالب فایبر گلاس. تمیز سازی سریع و آسان قالب های بتن با استفاده از روغن قالب بتن. روغن قالب بتن بر پایه آبی نیست چون باعث زنگ زدگی قالب ها خواهد شد و با بتن به سادگی ممزوج نیست.

مشخصات روغن قالب بتن: وزن روغن قالب بتن 83/0کیلوگرم است. رنگ روغن قالب بتن قهوه ای تیره است. شکل روغن قالب بتن به شکل مایع با ویسکوزیته پایین است.

مقدار مصرف روغن قالب بتن: 20الی40 متر مربع به ازای هر لیتر روغن قالب بتن بسته به سطح قالب بتن است

.

طریقه مصرف روغن قالب بتن: سطح قالب ها را می توان به وسیله پیستوله یا برس یا غلطک به وسیله روغن قالب بتن اندودکرد

نکته ایمنی روغن قالب بتن

روغن قالب بتن قابلیت اشتعال دارد، پس حتمی باید نکات ایمنی در مورد نگهداری روغن قالب رعایت شود. و در زمان مصرف روغن قالب بتن از دستکش و عینک ایمنی استفاده شود.

طریقه نگهداری روغن قالب بتن: روغن قالب بتن در ظروف در بسته و شرایط محیطی مناسب به دور از هر نوع آلودگی مخصوصا ورود هر گونه گرد وغبار حداقل تا 18 ماه از تاریخ تولید قابل نگهداری است. نکات ایمنی روغن قالب بتن: روغن قالب بتن قابلیت اشتعال دارد، می باید نکات ایمنی را در مورد مواد قابل اشتعال رعایت کرد. در هنگام استفاده از روغن قالب بتن از دستکش و عینک ایمنی استفاده فرمایید.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


ژئوتکستایل و الیاف پلی استر

پیچیدگی رفتار سازه ای در برابر بارهای تصادفی، سازه های بلند و سازه های خاص در محیطهای دریایی و غیره موجب شده نگرش جدید در بکار بردن مواد و مصالح وفرآورده های جدید ساختمانی با رفتار و خواص متفاوت از آنچه تاکنون در ساخت سازه ها بکار می رفته است بوجود آید.

در این تحقیق به بررسی نقش انواع رزین ها، الیاف و مواد کامپوزیت در مقاوم سازی سازه های بتنی پرداخته شده است. تقویت کننده ها الزاماً به شکل الیاف بلند نیستند، بلکه ممکن است بشکل ذره، پولک، موی ‏‎(Whisker)‎‏ و الیاف غیرمداوم، الیاف مداوم و ورقه باشند. اکثر مواد در شکل لیفی خود محکمتر و سفت تر از دیگر اشکال هستند و به این دلیل تقویت کننده های لیفی مصرف بیشتری دارند. ‏

‏در دهه اخیر مواد کامپوزیتها، پیشرفت شایانی کرده اند این به دلیل ویژگیهای منحصر به فردی است که در این مواد به چشم می خورد. امکان بکارگیری کامپوزیتها در بسیاری از زمینه های صنعتی فراهم شده است. در این میان میتوان به موارد ذیل اشاره کرد؛ استفاده از کامپوزیتها در صنعت هوافضا بخاطر خواص استثنایی از قبیل مقاومت، سختی، سبکی، پایداری حرارتی و غیره ای است که این مواد از خود نشان می دهند و این امکان را فراهم می سازند که بتوان به افزایش کارایی و عملکرد ساختار هوا فضا کمک کرد ‏‎]‎‏1‏‎[‎‏.

یکی دیگر از کاربردهای الیاف در ساخت فضاپیماهای شاتل است. همانطور که می دانیم شاتل در پروازهای خود متحمل انواع شوکهای حرارتی می شود، بویژه هنگام ورود به اتمسفر تفاضل دما در دماغه مخروطی شکل آن در صورت بکارگیری هر نوع فلز سبب ذوب شدن آن می شود. اما بکارگیری الیاف کربن (گرافیت) در کنار رزین گرما سخت از نوع اپوکسی نه تنها موجب حل مشکل فوق گردید بلکه منجر به کاهش وزن شاتل به میزان 400 کیلوگرم نیز شد که این خود به تنهایی موفقیت بزرگی بود. از کاربردهای دیگر کامپوزیتها می‌توان به ساخت بدنه قطارها و لوکوموتیوها اشاره نمود .

بسیاری از انواع مواد مهندسی، نوعی کامپوزیت محسوب می‌شوند . هم مواد ترموست (گرما سخت) و هم مواد ترموپلاستیک (گرمانرم) جهت فراهم نمودن خواص فیزیکی بهتر برای کامپوزیتهای حاصل مورد مصرف در صنایع شیمیایی قابل تقویت شدن می‌باشند.

پلی استرها ترکیبات فنولیک، اپوکسی ها، وینیل استرها و فوران ها بعنوان رزین دامنه وسیعی از کاربردها را بخود اختصاص می دهند. از مواد تقویت کننده متداول نیز می‌توان به شیشه، آزبست، گرافیت، الیاف آلی و فلزی اشاره نمود. اصولاً هدف از استفاده کامپوزیتها در صنایع شیمیایی را می‌توان بطور خلاصه بصورت دستیابی به موادی با خواص فیزیکی و شیمیایی بهتر خلاصه نمود. از متداولترین و پرمصرف ‌ترین تقویت کننده های این صنعت ( شیمیایی ) می‌توان به شیشه اشاره نمود. مهمترین ماتریسهای مورد استفاده نیز عبارتند از : پلی استرهای با مصرف عمومی ، پلی استرهای ایزوفتالیک، پلی استرهای بیس فنل، پلی استرهای مقاوم شیمیایی هالوژنه،رزینهای وینیل استر، اپوکسیها و فورانها. ‏
‏ ‏

کاربرد مواد کامپوزیت در صنعت ساختمان

کاربرد کامپوزیت را می‌توان در محیط زیست، هیدرولیک، سازه و حتی ژئوتکنیک مشاهده کرد. مواد کامپوزیت استفاده شده در مهندسی ساختمان را می‌توان به سه دسته تقسیم کرد :

الف) ملات ‏‎-‎‏ الیاف

ب ) بتن ‏‎-‎‏ الیاف

ج ) سیمان ‏‎-‎‏ الیاف‏

امروزه در مهندسی ساختمان استفاده از آرماتورها و کابلهای غیرفلزی ‏F R P‏ تهیه شده از مواد کامپوزیت جهت مسلح کردن سازه ها مطرح شده است . این مواد جهت سازه های بتنی به خصوص پلها، سازه های دریایی و ... کاربرد دارند‏‎]‎‏2‏‎[‎‏.

کامپوزیت ترکیبی از دو ماده الیاف و ماتریس می‌باشد . الیاف می‌تواند از جنس های گوناگون بوده و به صورت منظم و یکنواخت و یا به صورت غیرمنظم و پراکنده در محیط ماتریس قرار گیرد . در واقع سه نوع از الیاف در مهندسی ساختمان متداولترند که عبارتند از :‌الیاف شیشه ای ، آرامید و الیاف کربن. ماتریس های معمول در کاربردهای مهندسی ساختمان عموماً از خانواده ماتریس های پلیمری بوده که مهمترین آنها اپوکسی و پلی استر می باشند. در ضمن مواد کامپوزیت جهت مقاوم سازی سازه های بتون مسلح نیز کاربرد دارند که با استفاده از ورقهای کامپوزیت که در سطح خارجی سازه بتنی اتصال داده می‌شود عمل مقاوم سازی انجام می گیرد . این ورقه ها از جنس الیاف شیشه، آرامید، و یا کربن هستند .

اصولاً عمل مقاوم سازی به منظور بهبود رفتار مکانیکی دالها، شاه تیرها، تیرها و ستونها که میزان آن بستگی به نوع الیاف و مقدار لایه پوششی دارد . که این عمل با استفاده از ماسه پاشی جهت زبر کردن سطح و برداشتن لایه غیرمقاوم و سپس اتصال به دو صورت پلیمریزاسیون پس ازآغشته شدن در محل و یا استفاده از چند لایه کامپوزیتی که با رزین واسط به سطح چسبانده می‌شود صورت می گیرد . این روش جهت مقاوم سازی سازه در مناطق زلزله خیز شناخته شده است و هم اکنون در کشورهای صنعتی جهت مسلح کردن تیرها و ستونها و ... استفاده می‌شود.

در اینجا بیشتر به بحث پیرامون انواع رزینها و تقویت کننده های مورد مصرف در صنعت فوق می پردازیم.

الف) تقویت کننده های لیفی

در صنایع ساختمانی به منظور بالا بردن میزان مقاومت و سختی سازه ها، تقویت کننده های مختلفی استفاده می شود.

تقویت کننده ها الزاماً به شکل الیاف بلند نیستند ممکن است بشکل ذره، پولک، موی ‏‎(Whisker)‎‏ و الیاف کوتاه، الیاف پیوسته و ورقه باشند. اکثر مواد در شکل لیفی خود محکمتر و سفت تر از دیگر اشکال خود هستند و به این دلیل تقویت کننده های لیفی مصرف بیشتری دارند.

در حقیقت نباتات بزرگترین مواد اولیه الیاف هستند . مثلاً الیاف سلولزی به شکل پنبه، کتان و کنف در صنعت نساجی به کار می روند و چوب و کاه در صنعت کاغذسازی مصرف می‌شوند. سایر الیاف طبیعی مانند مو، پشم و ابریشم شامل اشکال مختلفی از پروتئین هستند ‏‎]‎‏3‏‎[‎‏. الیاف شیشه در اشکال مختلف خود ، معمولی ترین تقویت کننده برای ماتریس های پلیمری اند، الیاف کولار (نوعی آرامید ) که توسط شرکت دوپونت در سال 1960 ساخته شد بسیارسفت تر و سبکتر از الیاف شیشه هستند. سایر الیاف که ترکیبی از استحکام بالا و سفتی زیاد در آنها وجود دارد عبارتند از الیاف بور، سیلیکون کاربید، کربن و آلومینا (‏Al2O3‎‏) تمام این الیاف در نیمه دوم قرن بیستم توسعه یافتند از طرفی الیاف سرامیکی بین سالهای 1970 تا 1980 به روش های جدید تکامل یافته است.

کاربرد الیاف به عنوان یک ماده مؤثر مهندسی مبتنی بر سه خصوصیت مهم است:

1 ‏‎-‎‏ قطر کوچک نسبت اندازه دانه ها یا واحدهای ساختاری ریز (‏Microstructueral‏)، این امر باعث می‌شود که پخش بیشتری از استحکام نسبت به حالتی که به شکل توده ای است به دست آید.

این نتیجه مستقیم اثر اندازه است، بدین معنی که اندازه کوچکتر عامل نقص کمتر در ماده می‌شود.‏

‏2 ‏‎-‎‏ نسبت طول به قطر( ‏‏ )زیاد، که این امر سبب می‌شود که بخش بسیار زیادی از بار به کار رفته از طریق ماتریس به الیاف قوی و سفت منتقل شود.

3 ‏‎-‎‏ درجه انعطاف پذیری بسیار بالا که مشخصه مدول بالای ماده و قطر کوچک آن است. این انعطاف پذیری کاربرد روشهای مختلف برای ساخت کامپوزیتها با الیاف را امکان پذیر می سازد.

متداولترین انواع تقویت کننده هایی که در ساخت این کامپوزیتها بکار می روند. شیشه می‌باشد که بدلیل خواص ویژه ای که دارد در اغلب سازه ها از آن به اشکال گوناگون استفاده می شود.

به هر حال کامپوزیتهای تقویت شده با الیاف شیشه ای بزرگترین گروه را در بین کامپوزیتهای با ماتریس پلیمری به خود اختصاص داده اند.

ب) رزینها

تقریبا کلیه پلاستیکها میتوانند بعنوان ماتریس سازه های کامپوزیتی مورد استفاده واقع شوند از متداولترین و پرمصرف ترین آنها در صنایع ساختمانی بعلت ارزان قیمت بودن و سهولت ساخت می‌توان به رزینهای پلی استر غیر اشباع ، اپوکسی ها و تا حدی آکریلیکها اشاره نمود. از گروههای اتصال دهنده اکریلیک می‌توان جهت بالا بردن مقاومت محیطی سازه استفاده نمود.

نتیجه گیری

وجود الیاف در ماتریس سیمانی شکننده سبب کاهش عرض ترک خوردگی و افزایش مقاومتهای خمشی و کششی میشود و در نتیجه طاقت شکست افزایش می یابد. آگاهی از ویژگیهای الیاف اهمیت زیادی در طراحی سازه ها دارد.

عوامل مهمتر انتخاب الیاف عبارتند از مقاومت کششی، بالا بودن نسبت ضریب ارتجاعی الیاف به ضریب ارتجاعی ماتریس که انتقال تنش را از ماتریس ممکن میسازد. ‏


نویسنده : کلینیک فنی و تخصصی بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))